297 research outputs found

    Variations in atherosclerosis and remodeling patterns in aorta and carotids

    Get PDF
    Atherosclerosis is a progressive disease that causes vascular remodeling that can be positive or negative. The evolution of arterial wall thickening and changes in lumen size under current "standard of care" in different arterial beds is unclear. The purpose of this study was to examine arterial remodeling and progression/regression of atherosclerosis in aorta and carotid arteries of individuals at risk for atherosclerosis normalized over a 1-year period. In this study, 28 patients underwent at least 2 black-blood in vivo cardiovascular magnetic resonance (CMR) scans of aorta and carotids over a one-year period (Mean 17.8 ± 7.5 months). Clinical risk profiles for atherosclerosis and medications were documented and patients were followed by their referring physicians under current "standard of care" guidelines. Carotid and aortic wall lumen areas were matched across the time-points from cross-sectional images. The wall area increased by 8.67%, 10.64%, and 13.24% per year (carotid artery, thoracic aorta and abdominal aorta respectively, p < 0.001). The lumen area of the abdominal aorta increased by 4.97% per year (p = 0.002), but the carotid artery and thoracic aorta lumen areas did not change significantly. The use of statin therapy did not change the rate of increase of wall area of carotid artery, thoracic and abdominal aorta, but decreased the rate of change of lumen area of carotid artery (-3.08 ± 11.34 vs. 0.19 ± 12.91 p < 0.05). Results of this study of multiple vascular beds indicated that different vascular locations exhibited varying progression of atherosclerosis and remodeling as monitored by CMR

    Sol-gel chemistry mediated Zn/Al-based complex dispersant for SWCNT in water without foam formation

    Get PDF
    We report a bimetallic Zn/Al complex as an efficient inorganic dispersant for SWCNT, synthesized from Zn(CH3COO)(2) and Al(NO3)(3). The Zn/Al complex shows more than four times greater efficiency at dispersing SWCNT than widely used surfactants (CTAB and SDS). Besides remarkable dispersibility, the Zn/Al complex does not foam upon any shaking treatment and it can be used just after quick dissolution of the powdered form, which is a marked advantage over surfactants. The Zn/Al complex, containing amorphous Al(CH3COO)(3) and a complex of Zn2+ and NO3- ions, should have a unique dispersion mechanism, differing from the surfactants. Al(CH3COO)(3) has higher affinity for SWCNT than ions, adsorbing onto its surface in the first layer and attracting Zn2+ and NO3- ions. Charge transfer interactions between the Zn/Al complex and SWCNT, as evidenced by optical absorption spectroscopy, should induce a charge on SWCNT; the zeta potential of such coated SWCNT was +55 mV, indicating a high dispersion stability in aqueous media. Hence, the Zn/Al complex can widen the applications of SWCNT to various technologies such as the transparent and conductive films, as well as high performance composite polymers. (C) 2015 Elsevier Ltd. All rights reserved.ArticleCARBON. 94:518-523 (2015)journal articl

    Turbulence Spreading into an Edge Stochastic Magnetic Layer Induced by Magnetic Fluctuation and Its Impact on Divertor Heat Load

    Get PDF
    Turbulence spreading into the edge stochastic magnetic layer induced by magnetic fluctuation is observed at the sharp boundary region in the large helical device. The density fluctuation excited at the sharp boundary region with a large pressure gradient does not propagate into the boundary region due to the blocking of turbulence spreading by the large second derivative of the pressure gradient. Once the magnetic fluctuation appears at the boundary, the density fluctuation begins to penetrate the edge stochastic layer and the second derivative of the pressure gradient also decreases. The increase of density fluctuation in this layer results in the broadening and reduction of the peak divertor heat load. It is demonstrated that magnetic fluctuation plays a key role in controlling the turbulence spreading at the boundary of plasma which contributes to the reduction of divertor heat load

    High Level Estradiol Induces EBV Reactivation and EBV gp350/220(+)CD138(+) Double-positive B Cell Population in Graves’ Disease Patients and Healthy Controls

    Get PDF
    Graves’ disease occurs predominantly in women. Epstein-Barr virus (EBV) mainly persists in human B lymphocytes, and its reactivation stimulates antibody production. We previously suggested that the EBV reactivation-induced production of TRAb and IgM at 100 nM estradiol (pregnant level) was lower than that at 0 nM estradiol and that class switch recombination may be increased by estradiol. In this study, we examined the effect of estradiol on EBV reactivation. We identified the expression of EBV-glycoprotein 350/220 (gp350/220) in the late phase of reactivation and plasma cell differentiation of EBV-infected cells using 72A1 antibody and CD138 antibody, respectively. We found the mean ratio of gp 350/220(+) CD138(+) cells at 100 nM estradiol was higher than that at 0 nM estradiol. These results suggested that EBV-infected cells could survive with keeping the ability of antibody production in 100 nM estradiol, which is consistent with the improvement of Graves’ disease during maternity and exacerbation postpartum

    Conducting linear chains of sulphur inside carbon nanotubes

    Get PDF
    Despite extensive research for more than 200 years, the experimental isolation of monatomic sulphur chains, which are believed to exhibit a conducting character, has eluded scientists. Here we report the synthesis of a previously unobserved composite material of elemental sulphur, consisting of monatomic chains stabilized in the constraining volume of a carbon nanotube. This one-dimensional phase is confirmed by high-resolution transmission electron microscopy and synchrotron X-ray diffraction. Interestingly, these one-dimensional sulphur chains exhibit long domain sizes of up to 160 nm and high thermal stability (similar to 800 K). Synchrotron X-ray diffraction shows a sharp structural transition of the one-dimensional sulphur occurring at similar to 450-650 K. Our observations, and corresponding electronic structure and quantum transport calculations, indicate the conducting character of the one-dimensional sulphur chains under ambient pressure. This is in stark contrast to bulk sulphur that needs ultrahigh pressures exceeding similar to 90 GPa to become metallic.ArticleNATURE COMMUNICATIONS. 4:2162 (2013)journal articl

    Metal-semiconductor transition like behavior of naphthalene-doped single wall carbon nanotube bundles

    Get PDF
    Accepted 27 Jun 2014Naphthalene (N) or naphthalene-derivative (ND) adsorption-treatment evidently varies the electrical conductivity of single wall carbon nanotube (SWCNT) bundles over a wide temperature range due to a charge-transfer interaction. The adsorption treatment of SWCNTs with dinitronaphthalene molecules enhances the electrical conductivity of the SWCNT bundles by 50 times. The temperature dependence of the electrical conductivity of N- or ND-adsorbed SWCNT bundles having a superlattice structure suggests metal-semiconductor transition like behavior near 260 K. The ND-adsorbed SWCNT gives a maximum in the logarithm of electrical conductivity vs. T-1. plot, which may occur after the change to a metallic state and be associated with a partial unravelling of the SWCNT bundle due to an evoked librational motion of the moieties of ND with elevation of the temperature.ArticleFARADAY DISCUSSIONS. 173:145-156 (2014)journal articl
    corecore