193 research outputs found

    Role of linear ubiquitination in inflammatory responses and tissue homeostasis

    Get PDF
    Polyubiquitination is a post-translational modification involved in a wide range of immunological events, including inflammatory responses, immune cell differentiation, and development of inflammatory diseases. The versatile functions of polyubiquitination are based on different types of ubiquitin linkage, which enable various UBD (ubiquitin binding domain)-containing adaptor proteins to associate and induce distinct biological outputs. A unique and atypical type of polyubiquitin chain comprising a conjugation between the N-terminal methionine of the proximal ubiquitin moiety and the C-terminal glycine of the distal ubiquitin moiety, referred to as a linear or M1-linked ubiquitin chain, has been studied exclusively within the field of immunology because it is distinct from other polyubiquitin forms: linear ubiquitin chains are generated predominantly by various inflammatory stimulants, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and act as a critical modulator of transient and optimal signal transduction. Moreover, accumulating evidence suggests that linear ubiquitin chains are of physiological significance. Dysregulation of linear ubiquitination triggers chronic inflammation and immunodeficiency via downregulation of linear ubiquitin-dependent nuclear factor-kappa B (NF-κB) signaling and by triggering TNF-α-induced cell death, suggesting that linear ubiquitination is a homeostatic regulator of tissue-specific functions. In this review, we focus on our current understating of the molecular and cellular mechanisms by which linear ubiquitin chains control inflammatory environments. Furthermore, we review the role of linear ubiquitination on T cell development, differentiation, and function, thereby providing insight into its direct association with maintaining the immune system

    A Calculus with Partially Dynamic Records for Typeful Manipulation of JSON Objects

    Get PDF
    This paper investigates language constructs for high-level and type-safe manipulation of JSON objects in a typed functional language. A major obstacle in representing JSON in a static type system is their heterogeneous nature: in most practical JSON APIs, a JSON array is a heterogeneous list consisting of, for example, objects having common fields and possibly some optional fields. This paper presents a typed calculus that reconciles static typing constraints and heterogeneous JSON arrays based on the idea of partially dynamic records originally proposed and sketched by Buneman and Ohori for complex database object manipulation. Partially dynamic records are dynamically typed records, but some parts of their structures are statically known. This feature enables us to represent JSON objects as typed data structures. The proposed calculus smoothly extends with ML-style pattern matching and record polymorphism. These results yield a typed functional language where the programmer can directly import JSON data as terms having static types, and can manipulate them with the full benefits of static polymorphic type-checking. The proposed calculus has been embodied in SML#, an extension of Standard ML with record polymorphism and other practically useful features. This paper also reports on the details of the implementation and demonstrates its feasibility through examples using actual Web APIs. The SML# version 3.1.0 compiler includes JSON support presented in this paper, and is available from Tohoku University as open-source software under a BSD-style license

    Linear ubiquitination‐induced necrotic tumor remodeling elicits immune evasion

    Get PDF
    Tumor-elicited inflammation confers tumorigenic properties, including cell death resistance, proliferation, or immune evasion. To focus on inflammatory signaling in tumors, we investigated linear ubiquitination, which enhances the nuclear factor-κB signaling pathway and prevents extrinsic programmed cell death under inflammatory environments. Here, we showed that linear ubiquitination was augmented especially in tumor cells around a necrotic core. Linear ubiquitination allowed melanomas to tolerate the hostile tumor microenvironment and to extend a necrosis-containing morphology. Loss of linear ubiquitination resulted in few necrotic lesions and growth regression, further leading to repression of innate anti-PD-1 therapy resistance signatures in melanoma as well as activation of interferon responses and antigen presentation that promote immune-mediated tumor eradication. Collectively, linear ubiquitination promotes tumor-specific tissue remodeling and the ensuing immune evasion

    Effective Epilepsy Surgery for Post-Traumatic West Syndrome Following Abusive Head Trauma

    Get PDF
    West syndrome, an infantile developmental and epileptic encephalopathy with a deleterious impact on long-term development, requires early treatment to minimize developmental abnormality; in such cases, epilepsy surgery should be considered a powerful therapeutic option. We describe a 10-month-old female admitted with West syndrome associated with a hemispheric lesion following abusive head trauma. Her seizures were suppressed by hemispherotomy at 12 months of age, leading to developmental improvement. Surgical treatment of West syndrome following traumatic brain injury has not been reported previously but is worth considering as a treatment option, depending on patient age and brain plasticity

    Thymoproteasomes produce unique peptide motifs for positive selection of CD8+ T cells

    Get PDF
    Positive selection in the thymus provides low-affinity T-cell receptor (TCR) engagement to support the development of potentially useful self-major histocompatibility complex class I (MHC-I)-restricted T cells. Optimal positive selection of CD8+ T cells requires cortical thymic epithelial cells that express β5t-containing thymoproteasomes (tCPs). However, how tCPs govern positive selection is unclear. Here we show that the tCPs produce unique cleavage motifs in digested peptides and in MHC-I-associated peptides. Interestingly, MHC-I-associated peptides carrying these tCP-dependent motifs are enriched with low-affinity TCR ligands that efficiently induce the positive selection of functionally competent CD8+ T cells in antigen-specific TCR-transgenic models. These results suggest that tCPs contribute to the positive selection of CD8+ T cells by preferentially producing low-affinity TCR ligand peptides
    corecore