57 research outputs found

    Spontaneous Histiocytic Sarcoma of the Popliteal Lymph Node in a Young Sprague-Dawley Rat

    Get PDF
    The present report describes a rare case of spontaneous primary histiocytic sarcoma of the popliteal lymph node in a 19-week-old female Sprague-Dawley (SD) rat. At necropsy, a 10 mm-diameter whitish nodule was found at the site of the femoral muscle in the right hindlimb. Histopathologically, the nodule comprised large pleomorphic histiocyte-like cells with abundant eosinophilic or foamy cytoplasm. Multinucleated giant cells, necrotic foci surrounded by palisading arrays of epithelioid histiocyte-like cells and phagocytosis of cell debris or erythrocytes by the neoplastic cells were occasionally observed. Invasion of the tumor cells into the surrounding adipose tissue was found focally, but there were no distal metastases. Immunohistochemically, the neoplastic cells were positive for vimentin, CD68 (ED1) and lysozyme. We concluded that this tumor occurred in the popliteal lymph node, considering the anatomical location of the lesion and the presence of the remnants of lymphoid tissue involved in the tumor

    The sphingosine-1-phosphate receptor modulator, FTY720, prevents the incidence of diabetes in Spontaneously Diabetic Torii rats

    Get PDF
    The sphingosine-1-phosphate (S1P) receptor modulator regulates lymphocyte trafficking, resulting in its depletion from circulation, which ultimately causes immunosuppression. In this study, we investigated the preventive effect of fingolimod (FTY720) in the non-obese type 2 diabetic model, Spontaneously Diabetic Torii (SDT) rats. The S1P receptor modulator, FTY720 (0.3 mg/kg p.o.), was administered for 12 weeks to SDT rats from 5 to 17 weeks of age. Based on our findings, FTY720 could suppress the incidence of diabetes in SDT rats. Further, glucose intolerance was improved in FTY720-treated SDT rats at 14 weeks of age. Based on the haematological and histological analyses performed at 17 to 18 weeks of age, a decrease in lymphocytes and monocytes in the peripheral blood and a decrease in lymphocyte and atrophy in spleen occurred in the FTY720-treated SDT rats. Furthermore, the pancreatic changes, such as inflammation, atrophy, and fibrosis in islets observed in SDT rats were improved by FTY720 treatment. These findings suggest that the immunomodulatory effects of FTY720 reduced the pancreatic lesion in SDT rats, thereby demonstrating its preventive effect against diabetes. The development of diabetes in SDT rats is related to disorders of the immune system. However, the S1P receptor modulator may be useful for treating type 2 diabetes

    Activity of Caprine CSN1S2 Protein Reducing the COX-2 and IL-17 Expression of Aorta Tissue in Type 2 Diabetes Mellitus Rat

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a degenerative disease that leads to increased inflammation and cyclooxygenase protein production, which causes tissue abnormalities. The aim of this study was to determine the effect of caprine CSN1S2 protein against abnormal metabolic pathways in the aorta of DM rats. The twenty-four-animal model was control, diabetes and treatment groups. Histopathological evaluation of the aortic tissue by hematoxylin eosin staining. The expression of cyclooxygenase and inflammatory cytokine was measured by western blotting. In the DM750 groups, the amount of discontinued-endothelial was significantly more reduced than in the other groups. The amount of macrophages in the DM1500- group decreased more than in the DM and DM375 groups. The amount of foam cells in the DM750 and DM1500 groups decreased more than in the DM group and was close to all control groups. The expressions of COX-2 and IL-17 were effectively reduced and vice versa the expression of IL-10 was increased in DM750 compared with the other groups. Meanwhile, COX-1 expression did not change in all groups. This study indicates that caprine CSN1S2 protein at a dose of 750 mg/kg BW has a significant effect on controlling, protecting, and repairing abnormalities in the aortic tissue of T2DM rats

    The Expression of Wnt4 Is Regulated by Estrogen via an Estrogen Receptor Alpha-dependent Pathway in Rat Pituitary Growth Hormone-producing Cells

    Get PDF
    Wnt signaling is important in many aspects of cell biology and development. In the mouse female reproductive tract, Wnt4, Wnt5a, and Wnt7a show differential expression during the estrus cycle, suggesting that they participate in female reproductive physiology. Although the pituitary is a major gland regulating reproduction, the molecular mechanism of Wnt signaling here is unclear. We elucidated the subcellular distribution of Wnt4 in the pituitary of estrogen-treated ovariectomized female rats. Expression of Wnt4 mRNA increased dramatically, particularly in proestrus compared with estrus and metestrus. Wnt4 protein was observed in the cytoplasm of almost all growth hormone (GH)-producing cells and in only a few thyroid-stimulating hormone β (TSHβ)-producing cells. In rat GH-producing pituitary tumor (MtT/S) cells, estrogen-induced expression of Wnt4 mRNA was completely inhibited by estrogen receptor antagonist ICI 182,780 in vitro. Thus, rat pituitary GH cells synthesize Wnt4 and this is induced by estrogen mediated via an estrogen receptor alpha-dependent pathway

    Inhibitory Effects of Anti-VEGF Antibody on the Growth and Angiogenesis of Estrogen-induced Pituitary Prolactinoma in Fischer 344 Rats: Animal Model of VEGF-targeted Therapy for Human Endocrine Tumors

    Get PDF
    Estrogen-induced pituitary prolactin-producing tumors (PRLoma) in F344 rats express a high level of vascular endothelial growth factor (VEGF) associated with marked angiogenesis and angiectasis. To investigate whether tumor development in E2-induced PRLoma is inhibited by anti-VEGF monoclonal antibody (G6-31), we evaluated tumor growth and observed the vascular structures. With simultaneous treatment with G6-31 for the latter three weeks of the 13-week period of E2 stimulation (E2+G6-31 group), the following inhibitory effects on the PRLoma were observed in the E2+G6-31 group as compared with the E2-only group. In the E2+G6-31 group, a tendency to reduction in pituitary weight was observed and significant differences were observed as (1) reductions in the Ki-67-positive anterior cells, (2) increases in TUNEL-positive anterior cells, and (3) repair of the microvessel count by CD34-immunohistochemistry. The characteristic “blood lakes” in PRLomas were improved and replaced by repaired microvascular structures on 3D observation using confocal laser scanning microscope. These inhibitory effects due to anti-VEGF antibody might be related to the autocrine/paracrine action of VEGF on the tumor cells, because VEGF and its receptor are co-expressed on the tumor cells. Thus, our results demonstrate that anti-VEGF antibody exerted inhibitory effects on pituitary tumorigenesis in well-established E2 induced PRLomas

    Ocular Changes --Cataract And Retinal Lesion-- In Spontaneously Diabetic Torii (SDT) Fatty Rats, An Obese Type 2 Diabetic Model

    Get PDF
    Cataract and retinopathy remain the preventable cause of blindness worldwide, and many pharmacological strategies have been proposed for the treatment of these eye diseases. Animal models play an important role in understanding the pathophysiological features of eye disease and developing for a new therapy. In this study, we investigated the development of cataract and retinal lesion with diabetes using an obese type 2 diabetic models SDT fatty rat. Macroscopic analysis in eyes was performed from 16 to 24 weeks of age and histological analysis was performed at 24 weeks of age. As a result, the lens cloudiness was observed from 19 weeks of age and the degree of the cloudiness was more progressed until 24 weeks of age. Histopathological findings, such as degeneration of lens fiber and shortening and irregular arrangement of cone and rod in retinal tissue, were observed at 24 weeks of age. In conclusion, SDT fatty rats may be useful to understand the pathological features in diabetic cataract and retinopathy develop a new therapy for the disease

    B cell-derived GABA elicits IL-10⁺ macrophages to limit anti-tumour immunity

    Get PDF
    GABAを標的とする抗腫瘍免疫機構 --代謝産物を介した免疫細胞間制御の一端を解明--. 京都大学プレスリリース. 2021-11-10.Small, soluble metabolites not only are essential intermediates in intracellular biochemical processes, but can also influence neighbouring cells when released into the extracellular milieu1-3. Here we identify the metabolite and neurotransmitter GABA as a candidate signalling molecule synthesized and secreted by activated B cells and plasma cells. We show that B cell-derived GABA promotes monocyte differentiation into anti-inflammatory macrophages that secrete interleukin-10 and inhibit CD8⁺ T cell killer function. In mice, B cell deficiency or B cell-specific inactivation of the GABA-generating enzyme GAD67 enhances anti-tumour responses. Our study reveals that, in addition to cytokines and membrane proteins, small metabolites derived from B-lineage cells have immunoregulatory functions, which may be pharmaceutical targets allowing fine-tuning of immune responses
    corecore