35 research outputs found

    Multiorbital analysis of the effects of uniaxial and hydrostatic pressure on TcT_c in the single-layered cuprate superconductors

    Get PDF
    The origin of uniaxial and hydrostatic pressure effects on TcT_c in the single-layered cuprate superconductors is theoretically explored. A two-orbital model, derived from first principles and analyzed with the fluctuation exchange approximation gives axial-dependent pressure coefficients, Tc/Pa>0\partial T_c/\partial P_a>0, Tc/Pc<0\partial T_c/\partial P_c<0, with a hydrostatic response Tc/P>0\partial T_c/\partial P>0 for both La214 and Hg1201 cuprates, in qualitative agreement with experiments. Physically, this is shown to come from a unified picture in which higher TcT_c is achieved with an "orbital distillation", namely, the less the dx2y2d_{x^2-y^2} main band is hybridized with the dz2d_{z^2} and 4s4s orbitals higher the TcT_c. Some implications for obtaining higher TcT_c materials are discussed.Comment: 6pages, 4 figure

    Ocular Changes --Cataract And Retinal Lesion-- In Spontaneously Diabetic Torii (SDT) Fatty Rats, An Obese Type 2 Diabetic Model

    Get PDF
    Cataract and retinopathy remain the preventable cause of blindness worldwide, and many pharmacological strategies have been proposed for the treatment of these eye diseases. Animal models play an important role in understanding the pathophysiological features of eye disease and developing for a new therapy. In this study, we investigated the development of cataract and retinal lesion with diabetes using an obese type 2 diabetic models SDT fatty rat. Macroscopic analysis in eyes was performed from 16 to 24 weeks of age and histological analysis was performed at 24 weeks of age. As a result, the lens cloudiness was observed from 19 weeks of age and the degree of the cloudiness was more progressed until 24 weeks of age. Histopathological findings, such as degeneration of lens fiber and shortening and irregular arrangement of cone and rod in retinal tissue, were observed at 24 weeks of age. In conclusion, SDT fatty rats may be useful to understand the pathological features in diabetic cataract and retinopathy develop a new therapy for the disease

    Demonstration of a spherical plasma mirror for the counter-propagating kilojoule-class petawatt LFEX laser system

    Full text link
    A counter-propagating laser-beam platform using a spherical plasma mirror was developed for the kilojoule-class petawatt LFEX laser. The temporal and spatial overlaps of the incoming and redirected beams were measured with an optical interferometer and an x-ray pinhole camera. The plasma mirror performance was evaluated by measuring fast electrons, ions, and neutrons generated in the counter-propagating laser interaction with a Cu-doped deuterated film on both sides. The reflectivity and peak intensity were estimated as ∼50% and ∼5 × 1018 W/cm2, respectively. The platform could enable studies of counter-streaming charged particles in high-energy-density plasmas for fundamental and inertial confinement fusion research.Kojima S., Abe Y., Miura E., et al. Demonstration of a spherical plasma mirror for the counter-propagating kilojoule-class petawatt LFEX laser system. Optics Express 30, 43491 (2022); https://doi.org/10.1364/oe.475945

    Microstructure and Corrosion Behavior of Laser Welded Magnesium Alloys with Silver Nanoparticles

    No full text
    Magnesium alloys have gained increased attention in recent years in automotive, electronics, and medical industry. This because of magnesium alloys have better properties than aluminum alloys and steels in respects of their low density and high strength to weight ratio. However, the main problems of magnesium alloy welding are the crack formation and the appearance of porosity during the solidification. This paper proposes a unique technique to weld two thin sheets of AZ31B magnesium alloy using a paste containing Ag nanoparticles. The paste containing Ag nanoparticles of 5 nm in average diameter and an organic solvent was used to coat the surface of AZ31B thin sheet. The coated sheet was heated at 100 °C for 60 s to evaporate the solvent. The dried sheet was set as a lower AZ31B sheet on the jig, and then lap fillet welding was carried out by using a pulsed Nd:YAG laser in a closed box filled with argon gas

    Laser Welding of Thin Sheet Magnesium Alloys

    No full text
    Introduction: Magnesium and its alloys are active materials, and the oxide can easily form when they react with air and moisture (Czerwinski 2002). In addition, magnesium and its alloys are flammable and require strict safeguards during the manufacturing process. These disadvantages make the processing of magnesium alloys into finished products more challenging. These drawbacks cause defects such as cracks, oxide inclusion, burn-through and voids both during and after processing. In order to minimize these defects, most processing methods must be performed at a certain temperature, unlike aluminum alloys and steels, which may be finished by cold working. Defect reduction can be achieved by minimizing the complexity of parts and the number of components produced. Furthermore, improved design techniques and production processing can eliminate defects in the finished products

    Characteristics of Welded Thin Sheet AZ31 Magnesium Alloy

    Get PDF
    Conventional arc welding processes are difficult to use to join thin sheet magnesium alloy because of the necessity of high energy input, which in turn leads to various problems such as burn through and distortion. Alternatively, laser welding can resolve these problems because of lower heat input and smaller spot size compared to conventional welding. Even when using laser welding, it is difficult to weld thin magnesium sheets with a thickness of less than 1 mm; cut, melt through and cracks tend to occur due to the evaporation of molten metal and high solidification rate. In this study, an attempt has been made to lap fillet welding of thin sheet magnesium alloy AZ31B with a thickness of 0.3 mm using a pulsed Nd:YAG laser beam in a conduction mode. This paper investigates the occurrence of defects in the lap fillet joint of AZ31B magnesium alloys. Defects such as void and cracks were observed at the weld root. A void at the root occurred because of lack of fusion due to insufficient melting of the lower sheet. The void was reduced by grinding the metal surface to eliminate the oxide layer. Cracks generated in large grain areas initiated from the void at the root. A higher scan speed significantly improves the defect behaviour because of generating a narrow large grain area and wider fine grain area. Macropore-free weld was obtained in this laser welding research, and smaller amount of micropores than the base metal can be attained

    The Characteristics of Laser Welded Magnesium Alloy Using Silver Nanoparticles as Insert Material

    Get PDF
    This paper describes the characteristics of the laser welding of thin-sheet magnesium alloys using silver (Ag) nanoparticles as an insert material. The experiment was conducted using nanoparticles with 5 nm and 100 nm diameters that were welded with a Nd:YAG laser. The microstructure and mechanical properties of the specimens welded using inserts with different sizes of nanoparticles and without an insert material, were examined. Electron probe micro-analyzer (EPMA) analysis was conducted to confirm the existence of Ag in the welded area. The introduction of the Ag nanoparticle insert promoted large area of fine grain and broadened the acceptable range of scanning speed parameters compared to welds without an insert. Welds with 5 nm nanoparticles yielded the highest fracture load of up to 818 N while the lowest fracture load was found for weld specimens with 100 nm nanoparticles. This lower fracture load was due to larger voids and a smaller throat length, which contributed to a lower fracture load when using larger nanoparticles
    corecore