34 research outputs found

    Manufacture of a rotor blade pitch horn using binder yarn fabrics

    Get PDF
    The use of binder yarn fabrics in rotor blade applications is investigated in this work. A preforming procedure is incorporated in manufacturing, resulting in higher degree of automation and a reduction of process steps. The performance of the process is evaluated with respect to cost savings compared to prepregging technologies

    Optimization of manufacturing processes used in thermoplastic composite materials

    No full text
    In the framework of the current PhD thesis, a generic concept for the optimization of manufacturing processes of composite material components with regard to product’s quality and cost is introduced. In the proposed concept the configuration of the manufacturing unit is considered as an option for optimizing families of products with regard to quality and cost. For processes offering flexibility in selecting process features and parameters, the concept can be applied straight forward. The proposed concept relies on the consideration of the processes thermal cycle as essential for both the quality and cost of the produced part. It involves a quality sensitivity analysis based on experimental data, which relates the values of the thermal cycle parameters to predefined quality characteristics (e.g. critical mechanical properties) as well as a cost analysis by relating the parameters of the thermal cycle to cost data using the Activity Based Costing (ABC) methodology. Outcome of the above analyses is the derivation of the material dependent Quality Functions (QFs) along with the derivation of the process dependent Cost Estimation Relationships (CERs). The configuration of the manufacturing unit is considered as an option for optimizing families of products with regard to quality and cost. To achieve this, the heating process has been simulated by developing a parametric Finite Element model, so as to virtually conceive heating units and calculate the corresponding thermal cycles. The latter are exploited to calculate quality and cost values using the derived QFs and CERs. The optimal thermal cycle which leads to minimum cost that satisfies the design and quality requirements, along with the allowable thermal cycle windows, is derived, by involving an iterative optimization procedure. To carry out the optimization procedure a suitable software tool, the LTSM-OPT tool, is developed and introduced. The proposed concept has been applied to optimize the ‘cold’ Diaphragm Forming (CDF) process, as well as, the Laser Transmission Welding process (LTW). The thermal sub-process involved in the processes under consideration is numerically simulated such as to allow for the virtual application of the respective thermal cycle on the material. Using the developed software the features of the CDF heating system and the LTW system configuration along with the optimal thermal cycle for producing a helicopter canopy as well as for welding stiffeners on the aircraft fuselage skin, respectively, were obtained. The results of the first study were successfully exploited by EUROCOPTER to install a new flexible CDF facility and produce helicopter canopies by applying the derived optimal thermal cycle. As well, the results of the latter analysis were successfully exploited by AIRBUS to configure and adapt a laser diode source device to weld stiffeners and riblets to the aircraft fuselage skin, and thus produce integral aeronautic structures, by applying the optimized solution derived from the present study.Κατά την εκπόνηση της παρούσας διδακτορικής διατριβής αναπτύχθηκε μία γενικευμένη μεθοδολογία βελτιστοποίησης των διεργασιών που χρησιμοποιούνται για την παραγωγή, μορφοποίηση και συνένωση κατασκευαστικών στοιχείων από σύνθετο υλικό, με κριτήριο την ποιότητα και το κόστος του παραγόμενου προϊόντος. Στην μεθοδολογία που προτείνεται, η διάταξη και τα τεχνολογικά χαρακτηριστικά της μονάδας παραγωγής, μορφοποίησης ή συγκόλλησης των κατασκευαστικών στοιχείων θεωρούνται μεταβλητές. Επομένως, για την βελτιστοποίηση της αντίστοιχης διεργασίας με κριτήρια την ποιότητα και το κόστος του παραγόμενου προϊόντος θεωρούνται ως μεταβλητά μεγέθη τόσο οι τιμές των παραμέτρων της διεργασίας (π.χ. πίεση, θερμοκρασία, χρόνος κλπ.) όσο και η διάταξη και τα τεχνολογικά χαρακτηριστικά της σχετικής μονάδας για την εφαρμογή της διεργασίας (π.χ. διάταξη και τεχνικά χαρακτηριστικά της μονάδας θέρμανσης). Η μεθοδολογία μπορεί να εφαρμοστεί στο σύνολο των διεργασιών που χρησιμοποιούνται στα θερμοπλαστικά σύνθετα υλικά και ευκολότερα σε διεργασίες στις οποίες είναι δυνατή η άμεση επιλογή των παραμέτρων της διεργασίας και η μεταβολή των διατάξεων της χρησιμοποιούμενης συσκευής? βασίζεται στην θεώρηση ότι σημαντικός παράγοντας που επηρεάζει το κόστος καθώς και την ποιότητα του παραγόμενου προϊόντος είναι ο κύκλος θέρμανσης που θα επιλεγεί. Η προτεινόμενη μεθοδολογία περιλαμβάνει την πειραματική διερεύνηση της επίδρασης των παραμέτρων της διεργασίας και ειδικότερα του κύκλου θέρμανσης στα προκαθορισμένα χαρακτηριστικά ποιότητας του παραγόμενου προϊόντος (π.χ. κρίσιμες μηχανικές ιδιότητες) καθώς και συσχέτιση των παραπάνω παραμέτρων με το τελικό κόστος παραγωγής, χρησιμοποιώντας την μεθοδολογία της εκτίμησης κόστους με βάση τη δραστηριότητα (Activity Based Costing method). Από την παραπάνω διερεύνηση προκύπτουν οι συναρτήσεις ποιότητας, οι οποίες κυρίως από το υλικό που χρησιμοποιείται, και οι συναρτήσεις εκτίμησης κόστους, οι οποίες εξαρτώνται κυρίως από την διεργασία. Σε κάποιες περιπτώσεις, τα πειραματικά δεδομένα που απαιτούνται για τον προσδιορισμό των παραπάνω συναρτήσεων είναι διαθέσιμα, κυρίως από την βιομηχανία. Για την εφαρμογή της μεθοδολογίας στις περιπτώσεις που δεν είναι διαθέσιμα επαρκή πειραματικά δεδομένα, γίνεται προσομοίωση του κύκλου θέρμανσης με χρήση της μεθόδου των πεπερασμένων στοιχείων, με την βοήθεια της οποίας κατασκευάζονται παραμετρικά μοντέλα, όπου εφαρμόζεται ‘εικονικά’ ένας μεγάλος αριθμός διαφορετικών κύκλων θέρμανσης και υπολογίζονται τα θερμικά μεγέθη που αντιστοιχούν στον καθένα (χρόνος και ρυθμός θέρμανσης, θερμοκρασία υλικού και κατανομή αυτής κλπ.). Τα μεγέθη αυτά αξιοποιούνται στην συνέχεια για τον υπολογισμό των μεγεθών ποιότητας και του κόστους κάνοντας χρήση των Συναρτήσεων Ποιότητας και των Συναρτήσεων Εκτίμησης Κόστους αντίστοιχα. Ο βέλτιστος συνδυασμός των παραμέτρων της διεργασίας και του κύκλου θέρμανσης καθώς και των ορίων που μπορούν να κυμαίνονται αυτά ώστε να ικανοποιείται η απαίτηση για την εξασφάλιση των προκαθορισμένων χαρακτηριστικών ποιότητας με το μικρότερο δυνατό κόστος, προκύπτει μέσω μιας επαναληπτικής διαδικασίας βελτιστοποίησης. Για την εφαρμογή της παραπάνω μεθοδολογίας βελτιστοποίησης αναπτύχθηκε και προτείνεται ένα υπολογιστικό εργαλείο-λογισμικό, το LTSM-OPT (Laboratory of Technology and Strength of Materials Process Optimization Tool). Η προτεινόμενη μεθοδολογία εφαρμόστηκε σε δύο νέες διεργασίες που χρησιμοποιούνται στα θερμοπλαστικά σύνθετα υλικά, την διεργασία ‘ψυχρής’ μορφοποίησης με διάφραγμα (‘cold’ diaphragm forming) και την διεργασία συγκόλλησης με λέιζερ (laser transmission welding). Στο πλαίσιο αυτό, ο κύκλος θέρμανσης, που περιλαμβάνεται και στις δύο υπό εξέταση διεργασίες, προσομοιώθηκε με την βοήθεια πεπερασμένων στοιχείων με σκοπό την ‘εικονική’ εφαρμογή των αντίστοιχων κύκλων θέρμανσης στο υλικό που εξετάστηκε. Στην συνέχεια, χρησιμοποιώντας το λογισμικό LTSM-OPT, προσδιορίστηκαν οι βέλτιστες παράμετροι των παραπάνω διεργασιών και οι αντίστοιχοι κύκλοι θέρμανσης για την παραγωγή του θόλου ελικοπτέρου καθώς και για την συγκόλληση ενισχυτικών δοκών στο εσωτερικό μέρος της ατράκτου αεροσκαφών, αντίστοιχα. Τα αποτελέσματα που προέκυψαν από την εφαρμογή της προτεινόμενης μεθοδολογίας αξιολογήθηκαν και χρησιμοποιήθηκαν από την εταιρεία κατασκευής ελικοπτέρων EUROCOPTER και την εταιρεία κατασκευής αεροσκαφών AIRBUS για την εγκατάσταση μίας νέας μονάδας ‘ψυχρής’ μορφοποίησης με διάφραγμα και την παραγωγή πρωτοτύπων θόλων ελικοπτέρου, καθώς και για την ρύθμιση της διάταξης του υπάρχοντος συστήματος συγκόλλησης με λέιζερ διόδου και την συγκόλληση ενισχυτικών δοκών στην άτρακτο αεροσκαφών, αντίστοιχα

    Life cycle assessment and cost analysis evaluation of a helicopter's canopy production using different manufacturing processes

    No full text
    In the present work, Life Cycle analysis (LCA) and Life cycle costing (LCC) models were developed in order to quantify the environmental footprint and cost and thus compare different manufacturing scenarios associated with the production of aeronautical structural components. To validate the models developed, they were implemented for the case of a helicopter's canopy processed by two techniques commonly used in aeronautics, namely the autoclave and the Resin Transfer moulding (RTM). The canopy was assumed to be made of a carbon fiber reinforced thermosetting material. Using the models developed the expected environmental and cost benefits by involving the RTM technique have been quantified

    A parametric prediction of the Young’s modulus of polymers enhanced with ΜWCNTs

    No full text
    In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer

    A parametric prediction of the Young’s modulus of polymers enhanced with ΜWCNTs

    No full text
    In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer

    Environmental and financial performance evaluation of a helicopter’s canopy production using different materials and manufacturing processes

    No full text
    In the present work Life Cycle Analysis (LCA) and Life Cycle Costing models (LCC) were developed for quantifying the financial and environmental performance of different material (carbon fiber reinforced thermosetting and carbon fiber reinforced thermoplastic composites) and manufacturing scenarios (autoclave, RTM and CDF) associated with the production of aeronautical structural components. To validate the models developed, they were implemented for the case of a helicopter’s canopy. The results from the analysis pointed out the environmental and financial 1advantage of producing the canopy from carbon fiber reinforced thermosetting composites involving RTM as the manufacturing process. On the other hand, the environmental and financial viability of the scenarios including thermoplastic composites as the material of choice is impaired from both the high embodied energy and raw material cost of PEEK. However, potential benefits from thermoplastic composites like recyclability and reusability as well as the high production rates that they offer and not taken into account in this study could improve their environmental and financial viability. This underlines the need to include potential reusing and recycling applications of the composites, as well as circular economy considerations to the criteria for designing an aircraft structure, selecting the material for this structure and finally manufacturing the structure

    Environmental and financial performance evaluation of a helicopter’s canopy production using different materials and manufacturing processes

    No full text
    In the present work Life Cycle Analysis (LCA) and Life Cycle Costing models (LCC) were developed for quantifying the financial and environmental performance of different material (carbon fiber reinforced thermosetting and carbon fiber reinforced thermoplastic composites) and manufacturing scenarios (autoclave, RTM and CDF) associated with the production of aeronautical structural components. To validate the models developed, they were implemented for the case of a helicopter’s canopy. The results from the analysis pointed out the environmental and financial 1advantage of producing the canopy from carbon fiber reinforced thermosetting composites involving RTM as the manufacturing process. On the other hand, the environmental and financial viability of the scenarios including thermoplastic composites as the material of choice is impaired from both the high embodied energy and raw material cost of PEEK. However, potential benefits from thermoplastic composites like recyclability and reusability as well as the high production rates that they offer and not taken into account in this study could improve their environmental and financial viability. This underlines the need to include potential reusing and recycling applications of the composites, as well as circular economy considerations to the criteria for designing an aircraft structure, selecting the material for this structure and finally manufacturing the structure

    Comparative Environmental and Cost Analysis of Alternative Production Scenarios Associated with a Helicopter’s Canopy

    No full text
    In the present work the carbon footprint and the financial viability of different materials, manufacturing scenarios, as well as recycling scenarios, associated with the production of aeronautical structural components are assessed. The materials considered were carbon fiber reinforced epoxy and carbon fiber reinforced PEEK (polyetheretherketone). The manufacturing techniques compared were the autoclave, resin transfer molding (RTM) and cold diaphragm forming (CDF). The recycling scenarios included mechanical recycling and pyrolysis. For this purpose, Life Cycle Analysis (LCA) and Life Cycle Costing (LCC) models were developed and implemented for the case of a helicopter’s canopy production. The results of the study pointed out that producing the canopy by using carbon fiber reinforced thermosetting composites and involving RTM as the manufacturing process is the optimal route both in terms of environmental and financial efficiency. The environmental and financial efficiency of the scenarios including thermoplastic composites as the material of choice is impaired from both the high embodied energy and raw material cost of PEEK. The scenarios investigated do not account for potential benefits arising from the recyclability and the improved reusability of thermoplastic matrices as compared to thermosetting ones. This underlines the need for a holistic aircraft structural optimization approach including not only performance and weight but also cost and environmental criteria
    corecore