278 research outputs found

    Enhancing multi-source content delivery in content-centric networks with fountain coding

    Get PDF
    Fountain coding has been considered as especially suitable for lossy environments, such as wireless networks, as it provides redundancy while reducing coordination overheads between sender(s) and receiver(s). As such it presents beneficial properties for multi-source and/or multicast communication. In this paper we investigate enhancing/increasing multi-source content delivery efficiency in the context of Content-Centric Networking (CCN) with the usage of fountain codes. In particular, we examine whether the combination of fountain coding with the in-network caching capabilities of CCN can further improve performance. We also present an enhancement of CCN's Interest forwarding mechanism that aims at minimizing duplicate transmissions that may occur in a multi-source transmission scenario, where all available content providers and caches with matching (cached) content transmit data packets simultaneously. Our simulations indicate that the use of fountain coding in CCN is a valid approach that further increases network performance compared to traditional schemes

    SiGe quantum dots for fast hole spin Rabi oscillations

    Get PDF
    We report on hole g-factor measurements in three terminal SiGe self-assembled quantum dot devices with a top gate electrode positioned very close to the nanostructure. Measurements of both the perpendicular as well as the parallel g-factor reveal significant changes for a small modulation of the top gate voltage. From the observed modulations we estimate that, for realistic experimental conditions, hole spins can be electrically manipulated with Rabi frequencies in the order of 100MHz. This work emphasises the potential of hole-based nano-devices for efficient spin manipulation by means of the g-tensor modulation technique

    Information-Centric Connectivity

    Get PDF
    Mobile devices are often presented with multiple connectivity options usually making a selection either randomly or based on load/wireless conditions metrics, as is the case of current offloading schemes. In this paper we claim that link-layer connectivity can be associated with information-availability and in this respect connectivity decisions should be information-aware. This constitutes a next step for the Information-Centric Networking paradigm, realizing the concept of Information-Centric Connectivity (ICCON). We elaborate on different types of information availability and connectivity decisions in the context of ICCON, present specific use cases and discuss emerging opportunities, challenges and technical approaches. We illustrate the potential benefits of ICCON through preliminary simulation and numerical results in an example use case

    Information-aware access network selection

    Get PDF
    Mobile devices are increasingly presented with multiple connectivity options, including WiFi hotspots, micro-/macro-cells or even other devices in device-to-device (D2D) communications. By and large, connectivity management for mobile devices has primarily focused on contention, congestion and wireless medium conditions. In this paper, we assess the role of information-centrism in mobile device connectivity management. Motivated by the increasing availability of content and services in in-network caches and micro-data centres, we design an access network selection scheme that takes into account information availability within each connectivity option. Our simulations show that information-awareness results in a significant increase of cache hit ratios by up to 115% in certain scenarios

    Diversity and composition of algal epiphytes on the Mediterranean seagrass Cymodocea nodosa : a scale-based study

    Get PDF
    Acknowledgements This work has been conducted at the Fisheries Research Institute (ELGO DIMITRA) as an undergraduate dissertation of Soultana Tsioli at the University of Patras with supervisors Prof. E. Papastergiadou and Dr. S. Orfanidis. FCK received funding from the UK Natural Environment Research Council (NERC, program Oceans 2025 – WP 4.5 and grants NE/D521522/1 and NE/J023094/1). Sequencing was conducted at the Molecular Genetics Facility (MGF) of NERC, supported by grant MGF 154.Peer reviewedPostprin

    Resilience of Interdependent Communication and Power Distribution Networks against Cascading Failures

    Get PDF
    The operations of many modern cyber-physical systems, such as smart grids, are based on increasingly interdependent networks. The impact of cascading failures on such networks has recently received significant attention due to the corresponding effect of these failures on the society. In this paper, we conduct an empirical study on the robustness of interdependent systems formed by the coupling of power grids and communication networks by putting real distribution power grids to the test. We focus on the assessment of the robustness of a large set of medium-voltage (MV) distribution grids, currently operating live in the Netherlands, against cascading failures initiated by different types of faults / attacks. We consider both unintentional random failures and malicious targeted attacks which gradually degrade the capability of the entire system and we evaluate their respective consequences. Our study shows that current MV grids are highly vulnerable to such cascades of failures. Furthermore, we discover that a small-world communication network structure lends itself to the robustness of the interdependent system. Also interestingly enough, we discover that the formation of hub hierarchies, which is known to enhance independent network robustness, actually has detrimental effects against cascading failures. Based on real MV grid topologies, our study yields realistic insights which can be employed as a set of practical guidelines for distribution system operators (DSOs) to design effective grid protection schemes

    Dzyaloshinskii-Moriya interaction in transport through single molecule transistors

    Full text link
    The Dzyaloshinskii-Moriya interaction is shown to result in a canting of spins in a single molecule transistor. We predict non-linear transport signatures of this effect induced by spin-orbit coupling for the generic case of a molecular dimer. The conductance is calculated using a master equation and is found to exhibit a non-trivial dependence on the magnitude and direction of an external magnetic field. We show how three-terminal transport measurements allow for a determination of the coupling-vector characterizing the Dzyaloshinskii-Moriya interaction. In particular, we show how its orientation, defining the intramolecular spin chirality, can be probed with ferromagnetic electrodes
    corecore