27 research outputs found

    Satellite derived integrated water vapor and rain intensity patterns: Indicators of rapid cyclogenesis

    Get PDF
    We examine integrated water vapor fields and rain intensity patterns derived from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) for several rapidly deepening and non-rapidly deepening midlatitude cyclones in the North Atlantic. Our goal is to identify features in the satellite data unique to the rapidly deepening cases, and to explore how these data can potentially be used in the analysis and forecasting of these events

    Relationship between wind, waves and radar backscatter

    Get PDF
    The aim of the research was to investigate the relationship between wind, waves, and radar backscatter from water surface. To this end, three field experiments with periods of 2 to 4 weeks were carried out during summer months in 1988, 1989 and 1990. For these periods, the University of Washington group provided (1) environmental parameters such as wind speed, wind stress, and atmospheric stratification through measurements of surface fluxes (of momentum, sensible heat and latent heat) and of air and water temperatures; and (2) wave height spectra including both the dominant waves and the short gravity-capillary waves. Surface flux measurements were performed by using our well tested instruments: a K-Gill twin propeller-vane anemometer and a fast response thermocouple psychrometer. Wave heights were measured by a resistance wire wave gauge. The University of Kansas group was responsible for the operation of the microwave radars

    Air-sea interaction and remote sensing

    Get PDF
    The first part of the proposed research was a joint effort between our group and the Applied Physics Laboratory (APL), University of Washington. Our own research goal is to investigate the relation between the air-sea exchange processes and the sea state over the open ocean and to compare these findings with our previous results obtained over a small body of water namely, Lake Washington. The goals of the APL researchers are to study (1) the infrared sea surface temperature (SST) signature of breaking waves and surface slicks, and (2) microwave and acoustic scattering from water surface. The task of our group in this joint effort is to conduct measurements of surface fluxes (of momentum, sensible heat, and water vapor) and atmospheric radiation (longwave and shortwave) to achieve our research goal as well as to provide crucial complementary data for the APL studies. The progress of the project is summarized

    Comparison of wind speed measurements over the oceans with the Special Sensor Microwave/Imager and the Geosat altimeter

    Get PDF
    In order to compare wind speed estimates from the Geosat altimeter and the Special Sensor Microwave/Imager (SSM/I), 25 colocated passes, within 2 hours of each other, were selected and the SSM/I estimates of wind speed and atmospheric parameters extracted along the Geosat track. Both instruments and their algorithms are described. A statistical comparison of wind speed estimates is presented and the effects of the atmospheric parameters from Geosat are analyzed. Quasi-simultaneous measurements by Geosat and SSM/I, along a Geosat track in the North-East Pacific, are also presented

    Atmospheric water parameters in mid-latitude cyclones observed by microwave radiometry and compared to model calculations

    Get PDF
    Existing and experimental algorithms for various parameters of atmospheric water content such as integrated water vapor, cloud water, precipitation, are used to examine the distribution of these quantities in mid latitude cyclones. The data was obtained from signals given by the special sensor microwave/imager (SSM/I) and compared with data from the nimbus scanning multichannel microwave radiometer (SMMR) for North Atlantic cyclones. The potential of microwave remote sensing for enhancing knowledge of the horizontal structure of these storms and to aid the development and testing of the cloud and precipitation aspects of limited area numerical models of cyclonic storms is investigated

    Vanishing Horizontal Sea Surface Temperature Gradients at Low Wind Speeds

    Get PDF
    Sea surface temperature (SST) is a result of multiple interactions in air-sea processes. During days with strong insolation and low wind speed, there may be uneven net heating of the water layer near the surface of the ocean, when there are horizontal temperature gradients at the sea surface. Cooling of the water caused by evaporation, sensible, or longwave radiative, heat loss would be greater from warm water compared to that from relatively cold water. As a result, under low wind speed conditions and clear skies, the horizontal SST discontinuities, occurring at fronts, eddies, or in storm wakes, may diminish or even vanish. This phenomenon is illustrated here with some field and modelling results. The dependence on latitude and mean environmental conditions of the difference in warming on the cold and warm side of SST discontinuities is explored. The time dependence is important for the impact on remote sensing of SST, and it is found to be short enough that substantial masking of SST gradients can occur during the first six hours of the diurnal heating cycle, but the effect would continue to grow if calm and solar heating persist for several subsequent days. An integrated effect of this uneven net heating is seen in the seasonal masking of subsurface temperature gradients in the Gulf of Mexico and Florida Straits

    Water Surface Currents, Short Gravity-Capillary Waves and Radar Backscatter

    Get PDF
    Despite their importance for air-sea interaction and microwave remote sensing of the ocean surface, intrinsic properties of short gravity-capillary waves are not well established. This is largely due to water surface currents and their effects on the direct measurements of wave parameters conducted at a fixed point. Frequencies of small scale waves propagating on a surface which itself is in motion, are subject to Doppler shifts. Hence, the high frequency tail of the wave spectra obtained from such temporal observations is smeared. Conversion of this smeared measured-frequency spectra to intrinsic-frequency (or wavenumber) spectra requires corrections for the Doppler shifts. Such attempts in the past have not been very successful in particular when field data were used. This becomes evident if the amplitude modulation of short waves by underlying long waves is considered. Microwave radar studies show that the amplitude of a short wave component attains its maximum value near the crests and its minimum in the troughs of the long waves. Doppler-shifted wave data yield similar results but much larger in modulation magnitude, as expected. In general, Doppler shift corrections reduce the modulation magnitude. Overcorrection may result in a negligible modulation or even in a strong modulation with the maximum amplitude in the wave troughs. The latter situation is clearly contradictory to our visual observations as well as the radar results and imply that the advection by currents is overestimated. In this study, a differential-advection approach is used in which small scale waves are advected by the currents evaluated not at the free surface, but at a depth proportional to their wavelengths. Applicability of this approach is verified by the excellent agreement in phase and magnitude of short-wave modulation between results based on radar and on wave-gauge measurements conducted on a lake

    WEAKENING OF HORIZONTAL SEA SURFACE TEMPERATURE GRADIENTS AT LOW WIND SPEEDS WITH STRONG INSOLATION

    No full text
    During days with strong insolation and low wind speed, there may be uneven net heating of the water layer near the surface of the ocean caused by variations in horizontal temperature at the sea surface. The heat loss from the water caused by evaporation, sensible, or longwave radiation is proportional to the sea surface temperature and is, therefore, greater from warm water compared to that from the relatively colder water. As a result, under low wind speed conditions and clear skies, the horizontal SST discontinuities, occurring at fronts, eddies, or in storm wakes, may diminish or even vanish. This phenomenon is illustrated here with some field and modeling results. The time dependence is important for the impact on remote sensing of SST, and it is found to be short enough that substantial masking of SST gradients can occur during the first six hours of the diurnal heating cycle, but the effect would continue to grow if calm and solar heating persist for several subsequent days. An integrated effect of this uneven net heating is seen in the seasonal masking of subsurface temperature gradients in the Gulf of Mexico and Florida Strait

    Microwave radiometer studies of atmospheric water over the oceans, volume 2

    Get PDF
    Since the Seasat carried the Scanning Multichannel Microwave Radiometer (SMMR) into space in July of 1978, shortly followed by the SMMR on Nimbus 7, which operated for almost a decade, a new type of data source on atmospheric water vapor and other meteorological parameters has been available for analysis of weather systems over the ocean. Since 1987, we have had the Scanning Multichannel Microwave/Imager (SSM/I) instrument on Defense Meteorological Satellites providing similar data. We present a collection of our work performed over the last years of the study
    corecore