20 research outputs found

    Microbial iron reduction during passive in situ remediation of an acidic mine pit lake mesocosm

    Get PDF
    AbstractFerric iron reduction was studied in a pilot-scale enclosure experiment for passive biological remediation of an acidic mine pit lake in Lusatia, Germany. The metabolic properties of prokaryotes involved in Fe(III) reduction may be important for the outcome of biological remediation, as chemolithotrophic Fe(III) reduction can counteract the desired pH increase, but heterotrophic Fe(III) reduction will provide the necessary Fe(II) for precipitation of sulfide minerals following sulfate reduction. Therefore, vertical profiles of sediment parameters related to iron and sulfur cycling were determined in conjunction with viable counts of different ferric iron-reducing micro-organisms using selective media. Findings were compared to an untreated reference site. The addition of organic matter stimulated ferric iron reduction and sulfate reduction in the enclosure and led to elevated pH and accumulations of ferrous iron and reduced sulfur compounds. Numbers of neutrophilic heterotrophic Fe(III) reducers increased during treatment, those of acidophilic heterotrophic Fe(III) reducers remained similar, and those of acidophilic chemolithotrophic Fe(III) reducers decreased. Zones of ferric iron-reducing activity corresponded well with microbial depth profiles; however, viable counts of neutrophilic or acid-tolerant Fe(III) reducers must have been underestimated based on the corresponding observed activity levels. Ferric iron reduction by chemolithotrophic acidophiles seemed to be of minor importance, so a lowering of pH values due to Fe(III) reducing activity is unlikely

    Microbial iron reduction does not release microplastics from organo‐metallic aggregates

    No full text
    Iron flocculants play a major role in the remediation of water bodies, removing particulate pollutants such as microplastics through floc formation. Such flocs are prone to microbial iron reduction while lying on top of anoxic sediments, which possibly leads the release of bound microplastics. In this study, Shewanella oneidensis was employed to simulate the impact of microbial iron reduction on the release of polyethylene spheres from sunken flocs in 120 d batch experiments. Most of the flocs iron (oxyhydr)oxides were reduced (70–90%), but this did not affect their integrity. Only a negligible proportion (0.2–2.7%) of polyethylene spheres was released, while the majority remained bound inside the floc matrix. This study exemplifies that flocs are quite stable, even when experiencing microbial iron reduction under anoxic conditions. Thereby incorporation into such aggregates may display a potential mode of long‐term microplastics storage in freshwater sediments.Bundesministerium fĂŒr Bildung und Forschung http://dx.doi.org/10.13039/501100002347https://doi.org/10.48758/ufz.1133

    Plastics in freshwater ecosystems

    No full text

    High Potential for Anaerobic Microbial Sulfur Oxidation in Oil Sands Tailings Ponds

    No full text
    The biogenic production of toxic H2S gas in sulfate-rich oil sands tailings ponds is associated with strong environmental concerns. Beside precipitation into sulfide minerals and chemical re-oxidation, microbial sulfur oxidation may catalyze sulfide re-cycling but potentially contributes to acid rock drainage (ARD) generation. To evaluate the microbial potential for sulfur oxidation, we conducted a microcosm-based pilot study with tailings of an active pond. Incubations were performed under oxic and anoxic conditions, with and without KNO3 as an electron acceptor and thiosulfate as a common substrate for microbial sulfur oxidation. The highest potentials of sulfur oxidation occurred in oxic assays (1.21 mmol L−1 day−1). Under anoxic conditions, rates were significantly lower and dominated by chemical transformation (0.09 mmol L−1 day−1; p 3 to anoxic incubations increased microbial thiosulfate oxidation 2.5-fold (0.23 mmol L−1 day−1; p = 0.0474), with complete transformation to SO42− coupled to NO3− consumption, pointing to the activity of sulfur-oxidizing bacteria (SOB) under nitrate-reducing conditions. Importantly, in the presence of KNO3, a decrease in sedimentary sulfides was associated with an increase in S0, which indicates the potential for microbially mediated oxidation of sulfide minerals and ARD generation. Furthermore, the comparative analysis of sediments from other anthropogenic aquatic habitats demonstrated high similarities with respect to viable SOB counts and corresponding activity rates

    Oxygen Dependent Temperature Regulation of Benthic Fluxes in Reservoirs

    No full text
    Temperature and dissolved oxygen concentration are critical factors affecting the exchange of solutes between sediment and water; both factors will be affected by warming of lakes and thereby influence water quality. Temperature and oxygen responses of single solute fluxes are well known; however, not much is known about the interaction of temperature and oxygen in regulating the balance of different fluxes in the benthic environment. We analyzed benthic flux (mobilization and immobilization) data of various solutes (dissolved organic carbon (DOC), CH4, NO3−‐N, NH4+‐N, SRP, SO4−, Fe, Mn, and O2) collected from laboratory incubations of 142 sediment cores from 5 different reservoirs incubated under varying in situ temperature and oxygen conditions. Oxygen was the primary driver of benthic fluxes, while temperature and total organic content were secondary. Temperature effects on benthic fluxes were stronger under anoxic conditions which imply that warming will substantially increase the benthic fluxes if the sediment surface becomes anoxic. The varying temperature response of processes underlying the studied fluxes will result in a shift of their relative importance in the benthic environment, especially in shallow lakes that are more vulnerable to warming. For example, more anoxic conditions will shift the equilibrium between net sulfate reduction and methane release toward the latter. We also predict that physical effects of warming leading to hypolimnetic oxygen depletion, that is, stronger stratification and longer hypolimnetic confinement will increase the benthic mobilization of phosphorus, DOC, and methane into water and immobilization of sulfate by the sediments even in deep lakes.Plain Language Summary: Temperature and dissolved oxygen concentration control the release of undesirable components buried in lake or reservoir sediments, that is, nutrients, metals, and organic matter, which can cause water quality problems. We investigated the effects of rising temperature and levels of oxygen on the release of undesirable components by performing experiments using sediments and water from five different reservoirs. The sediments with a layer of water on top were incubated under different in situ temperature (low and high) and oxygen conditions (with and without). Our results show that the absence of oxygen was the main cause of the release of nutrients and metals. When there was no oxygen in the sediment and water, nutrients and metals were released from the sediment into the water and this effect increased when temperature was high. There is higher possibility that phosphorus, dissolved organic carbon, and methane will be released from sediments in some reservoirs as a result of global warming.Key Points: Solute fluxes from benthic lake sediments varied in response to temperature, with oxygen fluxes responding most strongly. Temperature effects on the magnitude of benthic fluxes were stronger under anoxic than oxic conditions. Direct temperature effects on reservoir water quality will be small compared to indirect effects through anoxia facilitation.German Federal Ministry of Education and ResearchMINECOhttps://doi.pangaea.de/10.1594/PANGAEA.92857

    Adaptation of Coccomyxa sp. to Extremely Low Light Conditions Causes Deep Chlorophyll and Oxygen Maxima in Acidic Pit Lakes

    No full text
    Deep chlorophyll maxima (DCM) and metalimnetic oxygen maxima (MOM) are outstanding biogeochemical features of acidic pit lakes (APL). However, knowledge of the eukaryotic phototrophs responsible for their formation is limited. We aimed at linking the dynamics of phototrophic communities inhabiting meromictic APL in Spain with the formation of these characteristic layers. Firstly, the dynamics of DCM and MOM and their relation to physico-chemical parameters (photosynthetically active radiation (PAR), pH, dissolved ferric iron concentration, temperature), pigments and nutrient distribution is described; secondly, the phototrophic community composition is studied through a combination of microscopy, biomolecular and “omics” tools. Phototrophic communities of the studied APL show a low diversity dominated by green microalgae, specifically Coccomyxa sp., which have been successfully adapted to the chemically harsh conditions. DCM and MOM are usually non-coincident. DCM correspond to layers where phototrophs have higher chlorophyll content per cell to cope with extremely low PAR (<1 µmol m−2 s−1), but where photosynthetic oxygen production is limited. MOM correspond to shallower waters with more light, higher phytoplankton biomass and intense photosynthetic activity, which affects both oxygen concentration and water temperature. The main drivers of DCM formation in these APL are likely the need for nutrient uptake and photo-acclimation

    Factors Affecting Spatial and Temporal Variability of Metals in Drainage Water from Arable Fields

    No full text
    Respecting fertilizer application, the metal content in drainage water is studied under conventional agricultural management from 2013 to 2014 in two adjacent fields located in the North German Plain. Findings are compared with data of nutrients, main ions, and dissolved organic carbon, as well as element contents in fertilizers and geogenic background values of soils. Comparatively low metal concentrations are found in drainage water. These results are in line with metal contents of applied mineral fertilizers, of cattle slurry, and random analysis of the two soils considered. Relating to effective ordinances, the applied fertilizers occasionally pose a risk for the groundwater or downstream water bodies. Concentrations of some metals (Al, Co, Cr, Pb, and V) are rather affected by soil erosion than by fertilizers. Besides fertilizers and soil erosion, mainly pedo‐hydrological conditions, which differ between the two fields, influence element profiles in tile drainage by the extent of anoxia and subsequent denitrification and sulfate reduction. Against the background of climate change, further investigations with respect to possible changes in soil water budget are necessary.Variability of metals in drainage water from arable fields is investigated. Drainage improves topsoil conditions by amelioration. It also may aggravate diffuse pollution by shortening residence time of water in soil. In the study, besides fertilizers and soil erosion, mainly pedo‐hydrological conditions influence metal concentrations in tile drainage. Measures to minimize soil erosion should supplement careful use of fertilizers.German Federal Environmental Foundation (DBU
    corecore