3 research outputs found

    Accounting for seedling performance from nursery to outplanting when reforesting degraded tropical peatlands

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability: The full datasets supporting this study are deposited in the UK CEH Environmental Information Data Centre (Harrison et al. 2023). No novel code was used to generate these findings, and the code used is freely available as part of packages or existing published sources referenced in the text.Reforestation is promoted to address the dual global climate and biodiversity crises. This is particularly relevant for carbon-rich, biodiverse tropical peatlands, for which active reforestation typically involves two post-germination stages: nursery rearing of seedlings, then outplanting. Yet, linkages between these stages and cumulative seedling performance are rarely quantified during tropical peatland reforestation. By monitoring tree seedling survival and growth, we investigate factors influencing seedling performance (species identity, seedling source, treatments, and climate), whether nursery performance predicts outplanting performance, and calculate cumulative survival (nursery plus outplanting) in Sebangau National Park, Indonesian Borneo. Standardized survival at 2 years was higher in the nursery (mean 67% across 40 species) than outplanting (44% across 24 species). For nursery and outplanting, species identity was the main source of variation in survival and height growth. Seedling source, treatments, site condition, and precipitation had no significant impact on survival but did influence growth in some cases. Nursery survival did not predict outplanting survival, but nursery height did predict outplanting height. Across species, around a quarter of seedlings survived from nursery to outplanting over 4 years. Cumulative survival represents a more realistic basis for assessing the genetic and other resource costs of tropical peatland reforestation. Our two-phase approach identified outplanting as the greater bottleneck to cumulative seedling survivability. We argue that the nursery stage may be used to harden seedlings for degraded peatland conditions by selecting more relevant treatments (e.g. flooding) and screening for resilience to common disturbances (e.g. fire) to enhance outplanted, and thus cumulative, seedling survival.The Orangutan ProjectArcus FoundationDarwin InitiativeSave the OrangutanOrangutan Land TrustU.S. Fish and Wildlife Service Great Apes Conservation FundOcean Parks Conservation Foundation Hong KongEuropean Outdoor Conservation AssociationRufford Small Grants For NatureTaronga ZooEuropean Association of Zoos and AquariaFundacion BioparcUKRISingaporean Ministry of Educatio

    KAJIAN KERUSAKAN LINGKUNGAN DALAM RANGKA PELESTARIAN KAWASAN TAMAN WISATA ALAM BUKIT TANGKILING, KECAMATAN BUKIT BATU, KOTA PALANGKA RAYA, PROVINSI KALIMANTAN TENGAH

    No full text
    Nature park is one of nature conservation area which is mainly used for tourism and outdoor recreation. Nature conservation area is an area with a certain characteristics on land and in waters that have a protective function of life support systems, preserving of plants and animals diverse, as well as the sustainable use of natural resources and ecosystems. This research aims to study the forms of environment damage that occurred in Bukit Tangkiling Nature Park, Bukit Batu Subdistrict, Palangka Raya City, Central Kalimantan Province, as well as the proposed of management strategy. The approach that used in this study is a survey research approach. Survey research approach used spatially through the interpretation of data from Landsat satellite image processing 2000 and 2010 which resulted the land use map, as well as field observations and interviews conducted to determine the knowledge, perceptions, and community participation to nature park area. Data analysis using descriptive quantitative method for spatial data analyze, and qualitative descriptive method to show the physical condition of damage area due to land use. The results showed that there has been a conversion of land use in the area of Bukit Tangkiling Nature Park. That is happening because of people activity in Bukit Tangkiling Nature Park area, who use the land for mining stone with illegal logging, agriculture and plantations, and also settlement. Impact damage can be seen in land damage and vegetation in the area, such as erosion and sedimentation, that cause forest fires suscebtibility, destruction of ecosystems, the abundance of vegetation and native animals is reduced. Direction of environmental management strategies focused on conservation area by area improvement, community approach in order to stop mining activities, profession diverse to nature conservation and village conservation tourism. That�s need a good cooperation between governments and communities in order to manage Bukit Tangkiling Nature Park which based on community

    Tree species that ‘live slow, die older’ enhance tropical peat swamp restoration: Evidence from a systematic review

    Get PDF
    Funder: Arcus Foundation; Id: http://dx.doi.org/10.13039/100016681Funder: Darwin InitiativeFunder: European Association of Zoos and Aquaria; Id: http://dx.doi.org/10.13039/501100009167Funder: European Outdoor Conservation Association; Id: http://dx.doi.org/10.13039/501100013711Funder: Fundacion BioparcFunder: Ocean Parks Conservation Foundation Hong KongFunder: Orangutan Land TrustFunder: Save the OrangutanFunder: Taronga ZooFunder: The Orangutan ProjectFunder: Ministry of Environment & ForestryFunder: PT Rimba Makmur UtamaAbstract: Degraded tropical peatlands lack tree cover and are often subject to seasonal flooding and repeated burning. These harsh environments for tree seedlings to survive and grow are therefore challenging to revegetate. Knowledge on species performance from previous plantings represents an important evidence base to help guide future tropical peat swamp forest (TPSF) restoration efforts. We conducted a systematic review of the survival and growth of tree species planted in degraded peatlands across Southeast Asia to examine (1) species differences, (2) the impact of seedling and site treatments on survival and growth and (3) the potential use of plant functional traits to predict seedling survival and growth rates. Planted seedling monitoring data were compiled through a systematic review of journal articles, conference proceedings, reports, theses and unpublished datasets. In total, 94 study‐sites were included, spanning three decades from 1988 to 2019, and including 141 indigenous peatland tree and palm species. Accounting for variable planting numbers and monitoring durations, we analysed three measures of survival and growth: (1) final survival weighted by the number of seedlings planted, (2) half‐life, that is, duration until 50% mortality and (3) relative growth rates (RGR) corrected for initial planting height of seedlings. Average final survival was 62% and half‐life was 33 months across all species, sites and treatments. Species differed significantly in survival and half‐life. Seedling and site treatments had small effects with the strongest being higher survival of mycorrhizal fungi inoculated seedlings; lower survival, half‐life and RGR when shading seedlings; and lower RGR and higher survival when fertilising seedlings. Leaf nutrient and wood density traits predicted TPSF species survival, but not half‐life and RGR. RGR and half‐life were negatively correlated, meaning that slower growing species survived for longer. Synthesis and applications. To advance tropical peat swamp reforestation requires expanding the number and replication of species planted and testing treatments by adopting control vs. treatment experimental designs. Species selection should involve slower growing species (e.g. Lophopetalum rigidum, Alstonia spatulata, Madhuca motleyana) that survive for longer and explore screening species based on functional traits associated with nutrient acquisition, flooding tolerance and recovery from fire
    corecore