6 research outputs found

    Critical Quantum Chaos in 2D Disordered Systems with Spin-Orbit Coupling

    Full text link
    We examine the validity of the recently proposed semi-Poisson level spacing distribution function P(S), which characterizes `critical quantum chaos', in 2D disordered systems with spin-orbit coupling. At the Anderson transition we show that the semi-Poisson P(S) can describe closely the critical distribution obtained with averaged boundary conditions, over Dirichlet in one direction with periodic in the other and Dirichlet in both directions. We also obtain a sub-Poisson linear number variance Σ2(E)χ0+χE\Sigma_{2}(E)\approx \chi_{0}+ \chi E, with asymptotic value χ0.07\chi\approx0.07. The obtained critical statistics, intermediate between Wigner and Poisson, is relevant for disordered systems and chaotic models.Comment: 4 pages with 5 figure

    Ground state of a partially melted Wigner molecule

    Full text link
    We consider three spinless fermions free to move on 2d square lattice with periodic boundary conditions and interacting via a U/r Coulomb repulsion. When the Coulomb energy to kinetic energy ratio r_s is large, a rigid Wigner molecule is formed. As r_s decreases, we show that melting proceeds via an intermediate regime where a floppy two particle molecule coexists with a partially delocalized particle. A simple ansatz is given to describe the ground state of this mesoscopic solid-liquid regime.Comment: to appear in Europhysics Letter

    Role of a parallel magnetic field in two dimensional disordered clusters containing a few correlated electrons

    Full text link
    An ensemble of 2d disordered clusters with a few electrons is studied as a function of the Coulomb energy to kinetic energy ratio r_s. Between the Fermi system (small r_s) and the Wigner molecule (large r_s), an interaction induced delocalization of the ground state takes place which is suppressed when the spins are aligned by a parallel magnetic field. Our results confirm the existence of an intermediate regime where the Wigner antiferromagnetism defavors the Stoner ferromagnetism and where the enhancement of the Lande g factor observed in dilute electron systems is reproduced.Comment: 4 pages, 3 figure
    corecore