63 research outputs found

    Liver steatosis is associated with insulin resistance in skeletal muscle rather than in the liver in Japanese patients with non-alcoholic fatty liver disease

    Get PDF
    Aims/Introduction: To examine the association between liver histological features and organ-specific insulin resistance indices calculated from 75-g oral glucose tolerance test data in patients with non-alcoholic fatty liver disease. Materials and Methods: Liver biopsy specimens were obtained from 72 patients with non-alcoholic fatty liver disease, and were scored for steatosis, grade and stage. Hepatic and skeletal muscle insulin resistance indices (hepatic insulin resistance index and Matsuda index, respectively) were calculated from 75-g oral glucose tolerance test data, and metabolic clearance rate was measured using the euglycemic hyperinsulinemic clamp method. Results: The degree of hepatic steatosis, and grade and stage of non-alcoholic steatohepatitis were significantly correlated with Matsuda index (steatosis r = -0.45, P < 0.001; grade r = -0.54, P < 0.001; stage r = -0.37, P < 0.01), but not with hepatic insulin resistance index. Multiple regression analyses adjusted for age, sex, body mass index and each histological score showed that the degree of hepatic steatosis (coefficient = -0.22, P < 0.05) and grade (coefficient = -0.40, P < 0.01) were associated with Matsuda index, whereas the association between stage and Matsuda index (coefficient = -0.07, P = 0.593) was no longer significant. A similar trend was observed for the association between steatosis and metabolic clearance rate (coefficient = -0.62, P = 0.059). Conclusions: Liver steatosis is associated with insulin resistance in skeletal muscle rather than in the liver in patients with non-alcoholic fatty liver disease, suggesting a central role of fatty liver in the development of peripheral insulin resistance and the existence of a network between the liver and skeletal muscle

    Sitagliptin versus mitiglinide switched from mealtime dosing of a rapid-acting insulin analog in patients with type 2 diabetes: a randomized, parallel-group study

    Get PDF
    Purpose We determined the feasibility of substituting sitagliptin or mitiglinide for bolus insulin injection therapy in patients with type 2 diabetes. Methods 60 patients with type 2 diabetes were enrolled and randomized to switch from mealtime dosing of a rapid-acting insulin analog to either sitagliptin or mitiglinide for 16 weeks. Results Body weight, body mass index, and waist circumference decreased significantly in both groups at the end of the study. Mitiglinide significantly increased fasting plasma glucose (FPG) levels at the end of the study from 146.5±36.3 to 168.0±38.8 mg/dL, whereas sitagliptin did not affect FPG. Glycated hemoglobin (HbA1c) and 1,5-anhydroglucitol increased significantly in both groups. The C peptide immunoreactivity (CPR) responses after arginine were diminished in both groups. γ-GTP and triglycerides increased, and high-density lipoprotein cholesterol and adiponectin decreased, in the sitagliptin group, but not in the mitiglinide group. Mean Diabetes Treatment Satisfaction Questionnaire scores improved significantly in both groups. Patients whose mean total daily doses of rapid-acting insulin analog were 16.6 and 17.8 units were switched to sitagliptin and mitiglinide, respectively, without a change in the HbA1c level. Total insulin doses/body weight predicted changes in HbA1c only in the sitagliptin group, but not in the mitiglinide group. Use of >0.27 IU/kg of a rapid-acting insulin analog predicted an increase in HbA1c after switching to sitagliptin. The CPR index (CPI) was also a predictor for a change in HbA1c in the sitagliptin group, but not in the mitiglinide group; patients with a CPI<1.4 developed a worse HbA1c after switching to sitagliptin. Conclusions Sitagliptin may predominantly act on FPG, whereas mitiglinide may act on postprandial plasma glucose to achieve glycemic control after switching from a bolus insulin regimen. Additional therapy to sitagliptin or mitiglinide is clearly required to obtain equivalent glycemic control in patients using a higher dose of insulin

    Vildagliptin vs liraglutide as a second-line therapy switched from sitagliptin-based regimens in patients with type 2 diabetes: A randomized, parallel-group study

    Get PDF
    Introduction: A step-up strategy for dipeptidyl peptidase (DPP)-4 inhibitor-based regimens has not yet been established. In addition, similarities and differences between DPP-4 inhibitors and glucagon-like peptide (GLP)-1 receptor agonists remain to be elucidated in humans. We investigated the pleiotropic effects of vildagliptin vs liraglutide in patients with type 2 diabetes on sitagliptin-based regimens in an open-label, randomized, clinical trial. Materials and Methods: A total of 122 patients with type 2 diabetes that was inadequately controlled by sitagliptin-based regimens were randomly assigned to either vildagliptin (50 mg, twice daily) or liraglutide treatment (0.9 mg, once daily) for 12 weeks. The primary outcomes were glycated hemoglobin and body mass index. Results: Both vildagliptin and liraglutide significantly lowered glycated hemoglobin within 12 weeks after switching from sitagliptin, but liraglutide produced a greater reduction (-0.67 ± 0.12% vs -0.36 ± 0.53%). Liraglutide lowered body mass index, whereas vildagliptin did not affect body mass index. Vildagliptin lowered fasting C-peptide immunoreactivity, but liraglutide did not. Vildagliptin increased serum levels of adiponectin, arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, whereas liraglutide had no effect on these levels. Quality of life, assessed using the diabetes treatment satisfaction questionnaire, was not impaired in either group. The most common adverse events were gastrointestinal symptoms, which occurred with similar frequencies in both groups. Conclusions: Vildagliptin-mediated improvements in glycemic control did not correlate with indices for insulin secretion and insulin sensitivity. Switching from sitagliptin to liraglutide is useful in managing hyperglycemia and weight. Each agent exerts unique pleiotropic effects. This trial was registered with the University Hospital Medical Information Network Clinical Trials Registry (no. 000004953). © 2014 The Authors. Journal of Diabetes Investigation published by Asian Association of the Study of Diabetes (AASD) and Wiley Publishing Asia Pty Ltd

    Renoprotective effects of atorvastatin compared with pravastatin on progression of early diabetic nephropathy

    Get PDF
    Introduction: Several studies have shown that statins suppress the progression of diabetic nephropathy. However, few reports have directly compared the renoprotective effects between potent and conventional statins. Materials and Methods: Patients with diabetic nephropathy, selected as those with a serum creatinine level of 0.9-1.5 mg/dL and simultaneously having either microalbuminuria or positive proteinuria, were randomly assigned to one of three groups: a conventional diet therapy group, a group given 10 mg of pravastatin and a group given 10 mg of atorvastatin. Renal function was evaluated before and after a 12-month period of therapy. Results: The atorvastatin group had a significant decrease in low-density lipoprotein cholesterol at 3 months and thereafter compared with the other groups. The urinary albumin-to-creatinine ratio significantly decreased in the atorvastatin group; the degree of this decrease was significantly greater than that in the diet therapy group. The kidney function estimated with cystatin C (CysC) and the estimated glomerular filtration rate calculated from CysC were significantly preserved in the atorvastatin group compared with the pravastatin group. In a multivariate regression analysis, the use of atorvastatin was the only explanatory variable for the changes in CysC; this was independent of changes in low-density lipoprotein cholesterol. Conclusions: Atorvastatin is more effective than pravastatin for the prevention of increase in CysC, and this renoprotective effect was considered to a result of the pleiotropic effect of atorvastatin independent of its lipid-lowering effect. This study was registered with UMIN (no. UMIN 000001774). © 2014 The Authors

    Pharmacokinetics and pharmacodynamics of insulin aspart in patients with Type 2 diabetes: Assessment using a meal tolerance test under clinical conditions

    Get PDF
    Few studies have evaluated the pharmacokinetics of rapid-acting insulin analogues in patients with Type 2 diabetes, especially under clinical conditions. The aim of the present study was to assess both the pharmacokinetics and pharmacodynamics of insulin aspart in Type 2 diabetic patients who were being treated with the analogue alone. Meal tolerance tests with and without self-injection of a customary dose of insulin aspart (0.05-0.22 U/kg) were conducted in 20 patients in a randomized cross-over study. The dose of insulin aspart (per bodyweight) was significantly correlated with both the maximum concentration (r 2 = 0.59; P < 0.01) and area under the concentration-time curve for insulin aspart (r 2 = 0.53; P < 0.01). However, the time to maximum concentration (T max), which varied widely from < 60 to ≥ 120 min, was not associated with either dosage (r 2 = 0.02; P = 0.51) or body mass index (r 2 = 0.02; P = 0.57). Injection of insulin aspart exacerbated delayed hyperinsulinaemia after meal loading, mainly in patients with T max ≥ 120 min. With regard to pharmacodynamics, insulin aspart had favourable effects on postprandial hyperglycaemia, hyperglucagonaemia and hyperlipidaemia. The T max for this insulin analogue differed greatly between individuals and delayed hyperinsulinaemia was particularly exacerbated in patients with higher T max values. Identification of the factors contributing to interindividual variation in the absorption lag time is essential for improving the efficacy and safety of insulin aspart. © 2012 The Authors. Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd

    Beneficial effect of branched-chain amino acid supplementation on glycemic control in chronic hepatitis C patients with insulin resistance: Implications for type 2 diabetes

    Get PDF
    Branched-chain amino acids (BCAAs) improve disorders of albumin metabolism, quality of life, subjective symptoms, and prognosis in patients with chronic hepatitis. However, it remains unclear whether they improve insulin resistance. We examined the effects of BCAAs on glucose tolerance and insulin sensitivity in patients with chronic hepatitis C and insulin resistance. Individuals with a definitive diagnosis of chronic hepatitis C and insulin resistance were eligible for participation. Eligible participants were randomly assigned to the BCAA group or a control group. Participants were then crossed over to the other treatment for a further 12 weeks. Baseline clinical features, laboratory markers, fatty acid levels, and insulin sensitivity, assessed with oral glucose tolerance tests and a hyperinsulinemic euglycemic clamp, were also examined before and 12 and 24 weeks after the beginning of the study. Of the 27 patients who completed the study, 14 began in the BCAA group and 13 began as controls. There were no significant differences in glucose metabolism parameters or lipid profiles between the groups. HbA1c values were improved in 10 patients and worsened or remained unchanged in 17 patients. The only predictive variable for change in HbA1c was the baseline Matsuda index: the lower the index, the greater the improvement in HbA1c values. BCAA therapy did not have adverse effects on glucose tolerance or insulin sensitivity in patients with chronic hepatitis C and insulin resistance. Moreover, it had a therapeutic effect on HbA1c values in patients with marked peripheral (primarily muscle) insulin resistance. © 2012 Elsevier Inc

    Altered gene expression in T-cell receptor signalling in peripheral blood leucocytes in acute coronary syndrome predicts secondary coronary events

    Get PDF
    Objective: Comprehensive profiling of gene expression in peripheral blood leucocytes (PBLs) in patients with acute coronary syndrome (ACS) as a prognosticator is needed. We explored the specific profile of gene expression in PBLs in ACS for long-term risk stratification. Methods: 30 patients with ACS who underwent primary percutaneous coronary intervention (PCI) and 15 age-matched adults who participated in medical check-ups were enrolled from three centres. Peripheral blood samples were collected to extract RNA for microarray analyses. Results: During the 5-year follow-up, 36% of this cohort developed the expected non-fatal coronary events (NFEs) of target lesion revascularisation (TLR) and PCI for a de novo lesion. Class comparison analysis (p<0.005) demonstrated that 83 genes among 7785 prefiltered genes (41 upregulated vs 42 downregulated genes) were extracted to classify the patients according to the occurrence of NFE. Pathway analysis based on gene ontology revealed that the NFEs were associated with altered gene expression regarding the T-cell receptor signalling pathway in ACS. Univariate t test showed that the expression level of death-associated protein kinase1 (DAPK1), known to regulate inflammation, was the most significantly negatively regulated gene in the event group (0.61-fold, p<0.0005). Kaplan-Meier curve analysis and multivariate analysis adjusted for baseline characteristics or clinical biomarkers demonstrated that lower DAPK1 expression in PBL emerged as an independent risk factor for the NFEs (HR: 8.73; CI 1.05 to 72.8, p=0.045). Conclusions: Altered gene expression in T-cell receptor signalling in PBL in ACS could be a prognosticator for secondary coronary events. © Published by the BMJ Publishing Group Limited

    Metformin Prevents and Reverses Inflammation in a Non-Diabetic Mouse Model of Nonalcoholic Steatohepatitis

    Get PDF
    Background: Optimal treatment for nonalcoholic steatohepatitis (NASH) has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model. Methodology/Principal Findings: Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient plus high fat (MCD+HF) diet with or without 0.1% metformin for 8 weeks. Co-administration of metformin significantly decreased fasting plasma glucose levels, but did not affect glucose tolerance or peripheral insulin sensitivity. Metformin ameliorated MCD+HF diet-induced hepatic steatosis, inflammation, and fibrosis. Furthermore, metformin significantly reversed hepatic steatosis and inflammation when administered after the development of experimental NASH. Conclusions/Significance: These histological changes were accompanied by reduced hepatic triglyceride content, suppressed hepatic stellate cell activation, and the downregulation of genes involved in fatty acid metabolism, inflammation, and fibrogenesis. Metformin prevented and reversed steatosis and inflammation of NASH in an experimental non-diabetic model without affecting peripheral insulin resistance. © 2012 Kita et al

    Selenoprotein P as a diabetes-associated hepatokine that impairs angiogenesis by inducing VEGF resistance in vascular endothelial cells

    Get PDF
    Aims/hypothesis Impaired angiogenesis induced by vascular endothelial growth factor (VEGF) resistance is a hallmark of vascular complications in type 2 diabetes; however, its molecular mechanism is not fully understood. We have previously identified selenoprotein P (SeP, encoded by the SEPP1 gene in humans) as a liver-derived secretory protein that induces insulin resistance. Levels of serum SeP and hepatic expression of SEPP1 are elevated in type 2 diabetes. Here, we investigated the effects of SeP on VEGF signalling and angiogenesis. Methods We assessed the action of glucose on Sepp1 expression in cultured hepatocytes. We examined the actions of SeP on VEGF signalling and VEGF-induced angiogenesis in HUVECs. We assessed wound healing in mice with hepatic SeP overexpression or SeP deletion. The blood flow recovery after ischaemia was also examined by using hindlimb ischaemia model with Sepp1-heterozygous-knockout mice. Results Treatment with glucose increased gene expression and transcriptional activity for Sepp1 in H4IIEC hepatocytes. Physiological concentrations of SeP inhibited VEGF-stimulated cell proliferation, tubule formation and migration in HUVECs. SeP suppressed VEGF-induced reactive oxygen species (ROS) generation and phosphorylation of VEGF receptor 2 (VEGFR2) and extracellular signal-regulated kinase 1/2 (ERK1/2) in HUVECs. Wound closure was impaired in the mice overexpressing Sepp1, whereas it was improved in SeP-/-mice. SeP+/-mice showed an increase in blood flow recovery and vascular endothelial cells after hindlimb ischaemia. Conclusions/interpretation The hepatokine SeP may be a novel therapeutic target for impaired angiogenesis in type 2 diabetes. © 2014 Springer-Verlag Berlin Heidelberg
    corecore