136 research outputs found

    Development of a real-time quantitative assay for detection of Epstein-Barr virus

    Get PDF
    With the use of real-time PCR, we developed and evaluated a rapid, sensitive, specific, and reproducible method for the detection of Epstein-Barr virus (EBV) DNA in plasma samples. This method allowed us to screen plasma and serum samples over a range between 100 and 10(7) copies of DNA per ml using two sample preparation methods based on absorption. A precision study yielded an average coefficient of variation for both methods of less than 12%, with a coefficient of regression for the standard curve of a minimum of 0. 98. We detected EBV DNA in 19.2% of plasma samples from immunosuppressed solid-organ transplant patients without symptoms of EBV infections with a mean load of 440 copies per ml. EBV DNA could be detected in all transplant patients diagnosed with posttransplant lymphoproliferative disorder, with a mean load of 544,570 copies per ml. No EBV DNA could be detected in healthy individuals in nonimmunosuppressed control groups and a mean of 6,400 copies per ml could be detected in patients with infectious mononucleosis. Further studies revealed that the inhibitory effect of heparinized plasma could be efficiently removed by use of an extraction method with Celite as the absorbent

    Progress in human picornavirus research : New findings from the AIROPico consortium

    Get PDF
    Several research groups in Europe are active on different aspects of human picornavirus research. The AIROPico (Academia-Industry R&D Opportunities for Picornaviruses) consortium combined the disciplines of pathogenesis, diagnostics and therapy development in order to fill the gaps in our understanding of how picornaviruses cause human disease and how to combat them. AIROPico was the first EU consortium dedicated to human picornavirus research and development, and has largely accelerated and improved R&D on picornavirus biology, diagnostics and therapy. In this article, we present the progress on pathogenesis, diagnostics and treatment strategy developments for human picornaviruses resulting from the structured, translational research approach of the AIROPico consortium. We here summarize new insights in protection against infection by maternal or cross-protective antibodies, the visualisation of interactions between virus and neutralizing antibodies by cryoEM structural imaging, and the outcomes from a picornavirus-infected human 3D organoid. Progress in molecular detection and a fast typing assay for rhinovirus species are presented, as well as the identification of new compounds potentially interesting as therapeutic compounds.Peer reviewe

    Internally Controlled, Generic Real-Time PCR for Quantification and Multiplex Real-Time PCR with Serotype-Specific Probes for Serotyping of Dengue Virus Infections

    Get PDF
    Dengue has become a global public health problem and a sensitive diagnostic test for early phase detection can be life saving. An internally controlled, generic real-time PCR was developed and validated by testing serial dilutions of a DENV positive control RNA in the presence of a fixed amount of IC with results showing a good linearity (R2 = 0.9967) and a LOD of at least 1.95 × 104 copies/mL. Application of the generic PCR on 136 patient samples revealed a sensitivity of 95.8% and specificity of 100%. A newly developed multiplex real-time PCR with serotype-specific probes allowed the serotyping of DENV for 80 out of 92 (87%) generic real-time PCR positive patients. Combined these real-time PCRs offer a convenient diagnostic tool for the sensitive and specific quantification of DENV in clinical specimens with the possibility for serotyping

    Fourth Human Parechovirus Serotype

    Get PDF
    We identified a novel human parechovirus (HPeV) type (K251176-02) from a neonate with fever. Analysis of the complete genome showed K251176-02 to be a new HPeV genotype. Since K251176-02 could not be neutralized with antibodies against known HPeV serotypes 1–3, it should be classified as a fourth HPeV serotype

    High frequency of Polio-like Enterovirus C strains with differential clustering of CVA-13 and EV-C99 subgenotypes in a cohort of Malawian children

    Get PDF
    Enteroviruses (EVs) are among the most commonly detected viruses infecting humans worldwide. Although the prevalence of EVs is widely studied, the status of EV prevalence in sub-Saharan Africa remains largely unknown. The objective of our present study was therefore to increase our knowledge on EV circulation in sub-Saharan Africa. We obtained 749 fecal samples from a cross-sectional study conducted on Malawian children aged 6 to 60 months. We tested the samples for the presence of EVs using real time PCR, and typed the positive samples based on partial viral protein 1 (VP1) sequences. A large proportion of th

    Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis

    Get PDF
    The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA-protein interactions and dissection of virus assembly on the basis of RNA nucleation.Peer reviewe

    Laboratory-based surveillance in the molecular era: The typened model, a joint data-sharing platform for clinical and public health laboratories

    Get PDF
    Laboratory-based surveillance, one of the pillars of monitoring infectious disease trends, relies on data produced in clinical and/or public health laboratories. Currently, diagnostic laboratories worldwide submit strains or samples to a relatively small number of reference laboratories for characterisation and typing. However, with the introduction of molecular diagnostic methods and sequencing in most of the larger diagnostic and university hospital centres in high-income countries, the distinction between diagnostic and reference/public health laboratory functions has become less clear-cut. Given these developments, new ways of networking and data sharing are needed. Assuming that clinical and public health laboratories may be able to use the same data for their own purposes when sequence-based testing and typing are used, we explored ways to develop a collaborative approach and a jointly owned database (TYPENED) in the Netherlands. The rationale was that sequence data - whether produced to support clinical care or for surveillance -can be aggregated to meet both needs. Here we describe the development of the TYPENED approach and supporting infrastructure, and the implementation of a pilot laboratory network sharing enterovirus sequences and metadata

    High frequency and diversity of parechovirus A in a cohort of Malawian children

    Get PDF
    Parechoviruses (PeVs) are highly prevalent viruses worldwide. Over the last decades, several studies have been published on PeV epidemiology in Europe, Asia and North America, while information on other continents is lacking. The aim of this study was to describe PeV circulation in a cohort of children in Malawi, Africa. A total of 749 stool samples obtained from Malawian children aged 6 to 60 months were tested for the presence of PeV by real-time PCR. We performed typing by phylogenetic and Basic Local Alignment Search Tool (BLAST) analysis. PeV was found in 57% of stool samples. Age was signifcantly associated with PeV positivity (p = 0.01). Typing by phylogenetic analysis resulted in 15 diferent types, while BLAST typing resulted in 14 diferent types and several indeterminate strains. In total, six strains showed inconsistencies in typing between the two methods. One strain, P02-4058, remained untypable by all methods, but appeared to belong to the recently reclassifed PeV-A19 genotype. PeV-A1, -A2 and -A3 were the most prevalent types (26.8%, 13.8% and 9.8%, respectively). Both the prevalence and genetic diversity found in our study were remarkably high. Our data provide an important contribution to the scarce data available on PeV epidemiology in Africa
    corecore