3 research outputs found

    BMJ Open

    Get PDF
    In low-income settings with limited access to diagnosis, COVID-19 information is scarce. In September 2020, after the first COVID-19 wave, Mali reported 3086 confirmed cases and 130 deaths. Most reports originated from Bamako, with 1532 cases and 81 deaths (2.42 million inhabitants). This observed prevalence of 0.06% appeared very low. Our objective was to estimate SARS-CoV-2 infection among inhabitants of Bamako, after the first epidemic wave. We assessed demographic, social and living conditions, health behaviours and knowledges associated with SARS-CoV-2 seropositivity. We conducted a cross-sectional multistage household survey during September 2020, in three neighbourhoods of the commune VI (Bamako), where 30% of the cases were reported. We recruited 1526 inhabitants in 3 areas, that is, 306 households, and 1327 serological results (≥1 years), 220 household questionnaires and collected answers for 962 participants (≥12 years). We measured serological status, detecting SARS-CoV-2 spike protein antibodies in blood sampled. We documented housing conditions and individual health behaviours through questionnaires among participants. We estimated the number of SARS-CoV-2 infections and deaths in the population of Bamako using the age and sex distributions. The prevalence of SARS-CoV-2 seropositivity was 16.4% (95% CI 15.1% to 19.1%) after adjusting on the population structure. This suggested that ~400 000 cases and ~2000 deaths could have occurred of which only 0.4% of cases and 5% of deaths were officially reported. Questionnaires analyses suggested strong agreement with washing hands but lower acceptability of movement restrictions (lockdown/curfew), and mask wearing. The first wave of SARS-CoV-2 spread broadly in Bamako. Expected fatalities remained limited largely due to the population age structure and the low prevalence of comorbidities. Improving diagnostic capacities to encourage testing and preventive behaviours, and avoiding the spread of false information remain key pillars, regardless of the developed or developing setting. This study was registered in the registry of the ethics committee of the Faculty of Medicine and Odonto-Stomatology and the Faculty of Pharmacy, Bamako, Mali, under the number: 2020/162/CA/FMOS/FAPH

    Malaria in Burkina Faso: A comprehensive analysis of spatiotemporal distribution of incidence and environmental drivers, and implications for control strategies

    No full text
    International audienceBackground The number of malaria cases worldwide has increased, with over 241 million cases and 69,000 more deaths in 2020 compared to 2019. Burkina Faso recorded over 11 million malaria cases in 2020, resulting in nearly 4,000 deaths. The overall incidence of malaria in Burkina Faso has been steadily increasing since 2016. This study investigates the spatiotemporal pattern and environmental and meteorological determinants of malaria incidence in Burkina Faso. Methods We described the temporal dynamics of malaria cases by detecting the transmission periods and the evolution trend from 2013 to 2018. We detected hotspots using spatial scan statistics. We assessed different environmental zones through a hierarchical clustering and analyzed the environmental and climatic data to identify their association with malaria incidence at the national and at the district’s levels through generalized additive models. We also assessed the time lag between malaria peaks onset and the rainfall at the district level. The environmental and climatic data were synthetized into indicators. Results The study found that malaria incidence had a seasonal pattern, with high transmission occurring during the rainy seasons. We also found an increasing trend in the incidence. The highest-risk districts for malaria incidence were identified, with a significant expansion of high-risk areas from less than half of the districts in 2013–2014 to nearly 90% of the districts in 2017–2018. We identified three classes of health districts based on environmental and climatic data, with the northern, south-western, and western districts forming separate clusters. Additionally, we found that the time lag between malaria peaks onset and the rainfall at the district level varied from 7 weeks to 17 weeks with a median at 10 weeks. Environmental and climatic factors have been found to be associated with the number of cases both at global and districts levels. Conclusion The study provides important insights into the environmental and spatiotemporal patterns of malaria in Burkina Faso by assessing the spatio temporal dynamics of Malaria cases but also linking those dynamics to the environmental and climatic factors. The findings highlight the importance of targeted control strategies to reduce the burden of malaria in high-risk areas as we found that Malaria epidemiology is complex and linked to many factors that make some regions more at risk than others

    Sub-national tailoring of seasonal malaria chemoprevention in Mali based on malaria surveillance and rainfall data

    No full text
    International audienceBackground: In malaria endemic countries, seasonal malaria chemoprevention (SMC) interventions are performed during the high malaria transmission in accordance with epidemiological surveillance data. In this study we propose a predictive approach for tailoring the timing and number of cycles of SMC in all health districts of Mali based on sub-national epidemiological surveillance and rainfall data. Our primary objective was to select the best of two approaches for predicting the onset of the high transmission season at the operational scale. Our secondary objective was to evaluate the number of malaria cases, hospitalisations and deaths in children under 5 years of age that would be prevented annually and the additional cost that would be incurred using the best approach.Methods: For each of the 75 health districts of Mali over the study period (2014-2019), we determined (1) the onset of the rainy season period based on weekly rainfall data; (ii) the onset and duration of the high transmission season using change point analysis of weekly incidence data; and (iii) the lag between the onset of the rainy season and the onset of the high transmission. Two approaches for predicting the onset of the high transmission season in 2019 were evaluated.Results: In the study period (2014-2019), the onset of the rainy season ranged from week (W) 17 (W17; April) to W34 (August). The onset of the high transmission season ranged from W25 (June) to W40 (September). The lag between these two events ranged from 5 to 12 weeks. The duration of the high transmission season ranged from 3 to 6 months. The best of the two approaches predicted the onset of the high transmission season in 2019 to be in June in two districts, in July in 46 districts, in August in 21 districts and in September in six districts. Using our proposed approach would prevent 43,819 cases, 1943 hospitalisations and 70 deaths in children under 5 years of age annually for a minimal additional cost. Our analysis shows that the number of cycles of SMC should be changed in 36 health districts.Conclusion: Adapting the timing of SMC interventions using our proposed approach could improve the prevention of malaria cases and decrease hospitalisations and deaths. Future studies should be conducted to validate this approach
    corecore