10 research outputs found

    Pmaximus_Microsatellite_genotypes

    No full text
    The file contains data for 180 samples of great scallop (Pecten maximus) genotyped at 13 microsatellite loci. These samples where collected from nine locations along the coast of Northern Ireland

    Supplementary information 3: Computer code and accompanying documentation for morphometrics and colourimetric analyses from RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity

    No full text
    The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (<i>Pecten maximus</i>) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher <i>F</i><sub>st</sub> values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying both population structure and phenotypic plasticity in natural populations

    Supplementary information 2: Detailed ddRAD library preparation protocol from RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity

    No full text
    The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (<i>Pecten maximus</i>) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher <i>F</i><sub>st</sub> values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying both population structure and phenotypic plasticity in natural populations

    Supplementary table 3: Pairwise Fst values (below diagonal) and corresponding p-values (above diagonal) calculated using13 microsatellites genotyped in 45 individuals from RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity

    No full text
    The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (<i>Pecten maximus</i>) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher <i>F</i><sub>st</sub> values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying both population structure and phenotypic plasticity in natural populations

    Supplementary figure 7: Results of the Structure analysis after having excluded samples collected from Mulroy Bay. Results are shown for 13 microsatellites (panels a and b) and 10,539 SNPs (panels c and d). Panels (a) and (c) show mean +/- SE Ln P(D) values of five replicate Structure runs for each value of K, the hypothesised number of clusters in the data, ranging from one to nine. Panels (b) and (d) show the resulting cluster membership coefficients of each individual

    No full text
    The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (<i>Pecten maximus</i>) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher <i>F</i><sub>st</sub> values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying both population structure and phenotypic plasticity in natural populations

    Supplementary table 5 from ddRAD sequencing resolves fine-scale population structure in a benthic invertebrate with implications for understanding phenotypic plasticity

    No full text
    Summary of the results obtained from different de novo assemblies of the ddRAD data generated using different values for three main parameters -m, -M and -n within the denovo_map.pl Script in Stacks. -m and -M define the minimum number of raw reads and the maximum number of mismatches between loci when creating a stack within the same individual respectively. -n corresponds to the number of mismatches allowed between loci when processing multiple individuals. For each tested combination of parameters, we report the total number of tags, the number of tags present in all of the individuals, observed heterozygosity, average depth of coverage, and the number of SNPs obtained after filtering

    Supplementary figure 4 from ddRAD sequencing resolves fine-scale population structure in a benthic invertebrate with implications for understanding phenotypic plasticity

    No full text
    Results of the Structure analysis of a restricted dataset of 45 individuals genotyped at 13 microsatellites. Panel (a) shows the mean +/- SE Ln P(D) values of five replicate Structure runs for each value of K, the hypothesised number of clusters in the data, ranging from one to nine. Panel (b) shows the resulting cluster membership coefficients of each individual

    Supplementary figure 1: Illustration of the process of generating scallop shell outline coordinates for the geometric morphometrics analysis. From left to right: scaled digital photograph, isolated shell outline, and 1000 pseudo-landmarks placed along the shell perimeter from RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity

    No full text
    The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (<i>Pecten maximus</i>) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher <i>F</i><sub>st</sub> values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying both population structure and phenotypic plasticity in natural populations

    Supplementary table 2: Pairwise Fst values (below diagonal) and corresponding p-values (above diagonal) calculated using (a) 13 microsatellites genotyped in 180 individuals and (b) 10,539 SNPs genotyped in 45 individuals from RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity

    No full text
    The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (<i>Pecten maximus</i>) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher <i>F</i><sub>st</sub> values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying both population structure and phenotypic plasticity in natural populations
    corecore