6 research outputs found

    MicroRNA Expression Profiling in Prostate Cancer

    No full text

    Androgen regulation of micro-RNAs in prostate cancer

    No full text
    BACKGROUND. Androgens play a critical role in the growth of both androgen dependent and castration-resistant prostate cancer (CRPC). Only a few micro-RNAs (miRNAs) have been suggested to be androgen regulated. We aim to identify androgen regulated miRNAs. METHODS. We utilized LNCaP derived model, we have established, and which over-expresses the androgen receptor (AR), the VCaP cell line, and 13 intact-castrated prostate cancer (PC) xenograft pairs, as well as clinical specimens of untreated (PC) and CRPC. The expression of miRNAs was analyzed by microarrays and quantitative RT-PCR (Q-RT-PCR). Transfection of pre-miR-141 and anti-miR-141 was also used. RESULTS. Seventeen miRNAs were > 1.5-fold up-or downregulated upon dihydrotestosterone (DHT) treatment in the cell lines, and 42 after castration in the AR-positive xenografts. Only four miRNAs (miR-10a, miR-141, miR-150*, and miR-1225-5p) showed similar androgen regulation in both cell lines and xenografts. Of those, miR-141 was found to be expressed more in PC and CRPC compared to benign prostate hyperplasia. Additionally, the overexpression of miR-141 enhanced growth of parental LNCaP cells while inhibition of miR-141 by anti-miR-141 suppressed the growth of the LNCaP subline overexpressing AR. CONCLUSIONS. Only a few miRNAs were found to be androgen-regulated in both cell lines and xenografts models. Of those, the expression of miR-141 was upregulated in cancer. The ectopic overexpression of miR-141 increased growth of LNCaP cell suggesting it may contribute to the progression of PC. Prostate 71: 604-614, 2011. (C) 2010 Wiley-Liss, Inc

    Constitutively active androgen receptor splice variants AR-V3, AR-V7 and AR-V9 are co-expressed in castration-resistant prostate cancer metastases

    Get PDF
    Background: A significant subset of prostate cancer (PC) patients with a castration-resistant form of the disease (CRPC) show primary resistance to androgen receptor (AR)-targeting drugs developed against CRPC. As one explanation could be the expression of constitutively active androgen receptor splice variants (AR-Vs), our current objectives were to study AR-Vs and other AR aberrations to better understand the emergence of CRPC. Methods: We analysed specimens from different stages of prostate cancer by next-generation sequencing and immunohistochemistry. Results: AR mutations and copy number variations were detected only in CRPC specimens. Genomic structural rearrangements of AR were observed in 5/30 metastatic CRPC patients, but they were not associated with expression of previously known AR-Vs. The predominant AR-Vs detected were AR-V3, AR-V7 and AR-V9, with the expression levels being significantly higher in CRPC cases compared to prostatectomy samples. Out of 25 CRPC metastases that expressed any AR variant, 17 cases harboured expression of all three of these AR-Vs. AR-V7 protein expression was highly heterogeneous and higher in CRPC compared to hormone-naĂŻve tumours. Conclusions: AR-V3, AR-V7 and AR-V9 are co-expressed in CRPC metastases highlighting the fact that inhibiting AR function via regions common to all AR-Vs is likely to provide additional benefit to patients with CRPC
    corecore