19 research outputs found

    The inflammatory response of human pancreatic cancer samples compared to normal controls.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a poor prognosis cancer with an aggressive growth profile that is often diagnosed at late stage and that has few curative or therapeutic options. PDAC growth has been linked to alterations in the pancreas microbiome, which could include the presence of the fungus Malassezia. We used RNA-sequencing to compare 14 matched tumor and normal (tumor adjacent) pancreatic cancer samples and found Malassezia RNA in both the PDAC and normal tissues. Although the presence of Malassezia was not correlated with tumor growth, a set of immune- and inflammatory-related genes were up-regulated in the PDAC compared to the normal samples, suggesting that they are involved in tumor progression. Gene set enrichment analysis suggests that activation of the complement cascade pathway and inflammation could be involved in pro PDAC growth

    Rac1 as a therapeutic target in ovarian cancer

    Get PDF
    Rac1 is a high value therapeutic target for cancer based on its tumor promoting activities, yet clinical applications targeting Rac1 are in their infancy. High expression and hyperactivation of Rac1 in ovarian cancer, along with our identification of R-ketorolac as a novel Rac1 and Cdc42 selective inhibitor with translational potential, prompt us to test the hypothesis that targeting Rac1 has therapeutic utility for ovarian cancer. Ascites tumor cell samples from ovarian cancer patients in a prospective study receiving racemic ketorolac for clinically indicated use in pain relief were previously reported to show time dependent reduction of Rac1 and Cdc42 activities post-treatment. New RNA seq data of these patient samples reveals significant changes of genes involved in cell adhesion, cytokine-mediated signaling and cytokine production pathways. Conversely, the identified downregulated genes were overexpressed and associated with worse survival in ovarian cancer patients analyzed through The Cancer Genome Atlas (TCGA). Among the downregulated genes in the NOD pathway are chemokines and pro-inflammatory cytokines. Follow-up cytokine panels from patients confirm that racemic ketorolac treatment reduces the levels of immunosuppressive cytokines IL-6, IL-10 and RANTES in ascites fluids. Together, these data indicate there may be a benefit to the anti-inflammatory activity of the S- enantiomer, as well as the GTPase inhibitory activity of the R- enantiomer of ketorolac for ovarian cancer treatment

    HoxA-11 and FOXO1A Cooperate to Regulate Decidual Prolactin Expression: Towards Inferring the Core Transcriptional Regulators of Decidual Genes

    Get PDF
    During the menstrual cycle, the ovarian steroid hormones estrogen and progesterone control a dramatic transcriptional reprogramming of endometrial stromal cells (ESCs) leading to a receptive state for blastocyst implantation and the establishment of pregnancy. A key marker gene of this decidualization process is the prolactin gene. Several transcriptional regulators have been identified that are essential for decidualization of ESCs, including the Hox genes HoxA-10 and HoxA-11, and the forkhead box gene FOXO1A. While previous studies have identified downstream target genes for HoxA-10 and FOXO1A, the role of HoxA-11 in decidualization has not been investigated. Here, we show that HoxA-11 is required for prolactin expression in decidualized ESC. While HoxA-11 alone is a repressor on the decidual prolactin promoter, it turns into an activator when combined with FOXO1A. Conversely, HoxA-10, which has been previously shown to associate with FOXO1A to upregulate decidual IGFBP-1 expression, is unable to upregulate PRL expression when co-expressed with FOXO1A. By co-immunoprecipitation and chromatin immunoprecipitation, we demonstrate physical association of HoxA-11 and FOXO1A, and binding of both factors to an enhancer region (−395 to −148 relative to the PRL transcriptional start site) of the decidual prolactin promoter. Because FOXO1A is induced upon decidualization, it serves to assemble a decidual-specific transcriptional complex including HoxA-11. These data highlight cooperativity between numerous transcription factors to upregulate PRL in differentiating ESC, and suggest that this core set of transcription factors physically and functionally interact to drive the expression of a gene battery upregulated in differentiated ESC. In addition, the functional non-equivalence of HoxA-11 and HoxA-10 with respect to PRL regulation suggests that these transcription factors regulate distinct sets of target genes during decidualization

    Evolution of a derived protein–protein interaction between HoxA11 and Foxo1a in mammals caused by changes in intramolecular regulation

    No full text
    Current models of developmental evolution suggest changes in gene regulation underlie the evolution of morphology. Despite the fact that protein complexes regulate gene expression, the evolution of regulatory protein complexes is rarely studied. Here, we investigate the evolution of a protein-protein interaction (PPI) between Homeobox A11 (HoxA11) and Forkhead box 01A (Foxo1a). Using extant and “resurrected” ancestral proteins, we show that the physical interaction between HoxA11 and Foxo1a originated in the mammalian stem lineage. Functional divergence tests and coimmunoprecipitation with heterologous protein pairs indicate that the evolution of interaction was attributable to changes in HoxA11, and deletion studies demonstrate that the interaction interface is located in the homeodomain region of HoxA11. However, there are no changes in amino acid sequence in the homeodomain region during this time period, indicating that the origin of the derived PPI was attributable to changes outside the binding interface. We infer that the amino acid substitutions in HoxA11 altered Foxo1a's access to the conserved binding interface at the HoxA11 homeodomain. We also found an expansion in the number of paired Hox/Fox binding sites in the genomes of mammalian lineage species suggesting the complex has a biological function. Our data indicate that the physical interaction between HoxA11 and Foxo1a evolved through noninterface changes that facilitate the PPI, which prevents inappropriate interactions, rather than through the evolution of a novel binding interface. We speculate that evolutionary changes of intramolecular regulation have limited pleiotropic effects compared with changes to interaction domains themselves

    Physical interaction between HoxA-11 and FOXO1A.

    No full text
    <p>HoxA-11-V5/His and Flag-FOXO1A were overexpressed in HeLa cells and subjected to co-immunoprecipitation with anti-FLAG agarose beads. Eluates, without or with DNase treatment, were analyzed by Western blotting with V5 antibody, followed by re-probing with FLAG antibody.</p
    corecore