37 research outputs found

    Functional Connection between Rad51 and PML in Homology-Directed Repair

    Get PDF
    The promyelocytic leukemia protein (PML) is a tumor suppressor critical for formation of nuclear bodies (NBs) performing important functions in transcription, apoptosis, DNA repair and antiviral responses. Earlier studies demonstrated that simian virus 40 (SV40) initiates replication near PML NBs. Here we show that PML knockdown inhibits viral replication in vivo, thus indicating a positive role of PML early in infection. SV40 large T antigen (LT) induces DNA damage and, consequently, nuclear foci of the key homologous recombination repair protein Rad51 that colocalize with PML. PML depletion abrogates LT-induced Rad51 foci. LT may target PML NBs to gain access to DNA repair factors like Rad51 that are required for viral replication. We have used the SV40 model to gain insight to DNA repair events involving PML. Strikingly, even in normal cells devoid of viral oncoproteins, PML is found to be instrumental for foci of Rad51, Mre11 and BRCA1, as well as homology-directed repair after double-strand break (DSB) induction. Following LT expression or external DNA damage, PML associates with Rad51. PML depletion also causes a loss of RPA foci following γ-irradiation, suggesting that PML is required for processing of DSBs. Immunofluorescent detection of incorporated BrdU without prior denaturation indicates a failure to generate ssDNA foci in PML knockdown cells upon γ-irradiation. Consistent with the lack of RPA and BrdU foci, γ-irradiation fails to induce Chk1 activation, when PML is depleted. Taken together, we have discovered a novel functional connection between PML and the homologous recombination-mediated repair machinery, which might contribute to PML tumor suppressor activity

    ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells.

    No full text
    Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other's promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Z promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies

    Epstein-Barr Virus Infection Promotes Epithelial Cell Growth by Attenuating Differentiation-Dependent Exit from the Cell Cycle

    No full text
    Latent infection by Epstein-Barr virus (EBV) is an early event in the development of EBV-associated carcinomas. In oral epithelial tissues, EBV establishes a lytic infection of differentiated epithelial cells to facilitate the spread of the virus to new hosts. Because of limitations in existing model systems, the effects of latent EBV infection on undifferentiated and differentiating epithelial cells are poorly understood. Here, we characterize latent infection of an hTERT-immortalized oral epithelial cell line (NOKs). We find that although EBV expresses a latency pattern similar to that seen in EBV-associated carcinomas, infection of undifferentiated NOKs results in differential expression of a small number of host genes. In differentiating NOKs, however, EBV has a more substantial effect, reducing the extent of differentiation and delaying the exit from the cell cycle. This effect may synergize with preexisting cellular abnormalities to prevent exit from the cell cycle, representing a critical step in the development of cancer.Epstein-Barr virus (EBV) is a human herpesvirus that is associated with lymphomas as well as nasopharyngeal and gastric carcinomas. Although carcinomas account for almost 90% of EBV-associated cancers, progress in examining EBV’s role in their pathogenesis has been limited by difficulty in establishing latent infection in nontransformed epithelial cells. Recently, EBV infection of human telomerase reverse transcriptase (hTERT)-immortalized normal oral keratinocytes (NOKs) has emerged as a model that recapitulates aspects of EBV infection in vivo, such as differentiation-associated viral replication. Using uninfected NOKs and NOKs infected with the Akata strain of EBV (NOKs-Akata), we examined changes in gene expression due to EBV infection and differentiation. Latent EBV infection produced very few significant gene expression changes in undifferentiated NOKs but significantly reduced the extent of differentiation-induced gene expression changes. Gene set enrichment analysis revealed that differentiation-induced downregulation of the cell cycle and metabolism pathways was markedly attenuated in NOKs-Akata relative to that in uninfected NOKs. We also observed that pathways induced by differentiation were less upregulated in NOKs-Akata. We observed decreased differentiation markers and increased suprabasal MCM7 expression in NOKs-Akata versus NOKs when both were grown in raft cultures, consistent with our transcriptome sequencing (RNA-seq) results. These effects were also observed in NOKs infected with a replication-defective EBV mutant (AkataΔRZ), implicating mechanisms other than lytic-gene-induced host shutoff. Our results help to define the mechanisms by which EBV infection alters keratinocyte differentiation and provide a basis for understanding the role of EBV in epithelial cancers

    The DREAM complex mediates GIST cell quiescence and is a novel therapeutic target to enhance imatinib-induced apoptosis

    No full text
    GISTs can be successfully treated with imatinib mesylate (Gleevec), however, complete remissions are rare and patients frequently achieve disease stabilization in the presence of residual tumor masses. The clinical observation that discontinuation of treatment can lead to tumor progression suggests that residual tumor cells are in fact quiescent and hence able to re-enter the cell division cycle. In line with this notion, we have previously shown that imatinib induces GIST cell quiescence in vitro through the APCCDH1-SKP2-p27Kip1 signaling axis. Here, we provide evidence that imatinib induces GIST cell quiescence in vivo and that this process also involves the DREAM complex, a multi-subunit complex that has recently been identified as a additional key regulator of quiescence. Importantly, inhibition of DREAM complex formation by depletion of the DREAM regulatory kinase DYRK1A or its target LIN52 was found to enhance imatinib-induced cell death. Our results show that imatinib induces apoptosis in a fraction of GIST cells while at the same time a subset of cells undergoes quiescence involving the DREAM complex. Inhibition of this process enhances imatinib-induced apoptosis, which opens the opportunity for future therapeutic interventions to target the DREAM complex for more efficient imatinib responses.status: publishe

    Differential antitumor activity of compounds targeting the ubiquitin-proteasome machinery in gastrointestinal stromal tumor (GIST) cells

    No full text
    The majority of gastrointestinal stromal tumors (GISTs) are driven by oncogenic KIT signaling and can therefore be effectively treated with the tyrosine kinase inhibitor (TKI) imatinib mesylate. However, most GISTs develop imatinib resistance through secondary KIT mutations. The type of resistance mutation determines sensitivity to approved second-/third-line TKIs but shows high inter- and intratumoral heterogeneity. Therefore, therapeutic strategies that target KIT independently of the mutational status are intriguing. Inhibiting the ubiquitin-proteasome machinery with bortezomib is effective in GIST cells through a dual mechanism of KIT transcriptional downregulation and upregulation of the pro-apoptotic histone H2AX but clinically problematic due to the drug's adverse effects. We therefore tested second-generation inhibitors of the 20S proteasome (delanzomib, carfilzomib and ixazomib) with better pharmacologic profiles as well as compounds targeting regulators of ubiquitination (b-AP15, MLN4924) for their effectiveness and mechanism of action in GIST. All three 20S proteasome inhibitors were highly effective in vitro and in vivo, including in imatinib-resistant models. In contrast, b-AP15 and MLN4924 were only effective at high concentrations or had mostly cytostatic effects, respectively. Our results confirm 20S proteasome inhibitors as promising strategy to overcome TKI resistance in GIST, while highlighting the complexity of the ubiquitin-proteasome machinery as a therapeutic target.status: publishe

    Unbiased compound screening identifies unexpected drug sensitivities and novel treatment options for gastrointestinal stromal tumors

    No full text
    Most gastrointestinal stromal tumors (GISTs) are caused by oncogenic KIT or PDGFRA activation, and the small molecule kinase inhibitor imatinib mesylate is an effective first-line therapy for metastatic or unresectable GIST. However, complete remissions are rare and most patients ultimately develop resistance, mostly due to secondary mutations in the driver oncogenic kinase. Hence there is a need for novel treatment options to delay failure of primary treatment and restore tumor control in patients who progress under therapy with targeted agents. Historic data suggest that GISTs do not respond to classical chemotherapy, but systematic unbiased screening has not been performed. In screening a compound library enriched for FDA-approved chemotherapeutic agents (NCI Approved Oncology Drugs Set II), we discovered that GIST cells display high sensitivity to transcriptional inhibitors and topoisomerase II inhibitors. Mechanistically, these compounds exploited the cells' dependency on continuous KIT expression and/or intrinsic DNA damage response defects, explaining their activity in GIST. Mithramycin A, an indirect inhibitor of the SP1 transcription factor, and mitoxantrone, a topoisomerase II inhibitor, exerted significant antitumor effects in mouse xenograft models of human GIST. Moreover, these compounds were active in patient-derived imatinib-resistant primary GIST cells, achieving efficacy at clinically relevant concentrations. Taken together, our findings reveal that GIST cells have an unexpectedly high and specific sensitivity to certain types of FDA-approved chemotherapeutic agents, with immediate implications for encouraging their clinical exploration.status: publishe

    Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells.

    No full text
    Epstein-Barr virus (EBV) is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL) in immunosuppressed patients. However, the cellular mechanism(s) that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1) promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs) cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells

    Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus’s natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early <i>BZLF1</i> gene promoter

    No full text
    <div><p>When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs). We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV). Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch <i>BZLF1</i> gene, Zp, activating transcription via a consensus hypoxia-response element (HRE) located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, <i>BRLF1</i>. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK) and gingival epithelial (hGET) cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most <i>BZLF1</i>-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV’s natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for development of a lytic-induction therapy for treating some EBV-associated malignancies.</p></div
    corecore