50 research outputs found

    Identification of rare sequence variation underlying heritable pulmonary arterial hypertension.

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare disorder with a poor prognosis. Deleterious variation within components of the transforming growth factor-β pathway, particularly the bone morphogenetic protein type 2 receptor (BMPR2), underlies most heritable forms of PAH. To identify the missing heritability we perform whole-genome sequencing in 1038 PAH index cases and 6385 PAH-negative control subjects. Case-control analyses reveal significant overrepresentation of rare variants in ATP13A3, AQP1 and SOX17, and provide independent validation of a critical role for GDF2 in PAH. We demonstrate familial segregation of mutations in SOX17 and AQP1 with PAH. Mutations in GDF2, encoding a BMPR2 ligand, lead to reduced secretion from transfected cells. In addition, we identify pathogenic mutations in the majority of previously reported PAH genes, and provide evidence for further putative genes. Taken together these findings contribute new insights into the molecular basis of PAH and indicate unexplored pathways for therapeutic intervention

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    The pad1 + Gene Encodes a Subunit of the 26 S Proteasome in Fission Yeast

    No full text
    International audienceWe have isolated a fission yeast mutant, mts5-1, in a screen for mutations that confer both methyl 2-benzimidazolecarbamate resistance (MBCR) and temperature sensitivity (ts) on Schizosaccharomyces pombe. This screen has previously isolated mutations in the 26 S proteasome subunits Mts2, Mts3, and Mts4. We show that the mutation in the mts5-1 strain occurs in the pad1(+) gene. pad1(+) was originally isolated on a multicopy plasmid that was capable of conferring staurosporine resistance on a wild type strain. mts5-1/pad1-1 has a similar phenotype to 26 S proteasome mutants previously isolated in the same screen and we show that Pad1 interacts genetically with two of these subunits, Mts3 and Mts4. In this study we describe the identification of Pad1 as a subunit of the 26 S proteasome in fission yeast
    corecore