10 research outputs found
Recommended from our members
Stereoacuity in children with anisometropic amblyopia
PURPOSE: To determine factors associated with pretreatment and posttreatment stereoacuity in subjects with moderate anisometropic amblyopia. METHODS: Data for subjects enrolled in seven studies conducted by the Pediatric Eye Disease Investigator Group were pooled. The sample included 633 subjects aged 3 to <18 years with anisometropic amblyopia, no heterotropia observed by cover test, and baseline amblyopic eye acuity of 20/100 or better. A subset included 248 subjects who were treated with patching or Bangerter filters and had stereoacuity testing at both the baseline and outcome examinations. Multivariate regression models identified factors associated with baseline stereoacuity and with outcome stereoacuity as measured by the Randot Preschool Stereoacuity test. RESULTS: Better baseline stereoacuity was associated with better baseline amblyopic eye acuity (P < 0.001), less anisometropia (P = 0.03), and anisometropia due to astigmatism alone (P < 0.001). Better outcome stereoacuity was associated with better baseline stereoacuity (P < 0.001) and better amblyopic eye acuity at outcome (P < 0.001). Among 48 subjects whose amblyopic eye visual acuity at outcome was 20/25 or better and within one line of the fellow eye, stereoacuity was worse than that of children with normal vision of the same age. CONCLUSIONS: In children with anisometropic amblyopia of 20/40 to 20/100 inclusive, better posttreatment stereoacuity is associated with better baseline stereoacuity and better posttreatment amblyopic eye acuity. Even if their visual acuity deficit resolves, many children with anisometropic amblyopia have stereoacuity worse than that of nonamblyopic children of the same age
Stereoacuity in children with anisometropic amblyopia
To determine factors associated with pretreatment and posttreatment stereoacuity in subjects with moderate anisometropic amblyopia.
Data for subjects enrolled in seven studies conducted by the Pediatric Eye Disease Investigator Group were pooled. The sample included 633 subjects aged 3 to <18 years with anisometropic amblyopia, no heterotropia observed by cover test, and baseline amblyopic eye acuity of 20/100 or better. A subset included 248 subjects who were treated with patching or Bangerter filters and had stereoacuity testing at both the baseline and outcome examinations. Multivariate regression models identified factors associated with baseline stereoacuity and with outcome stereoacuity as measured by the Randot Preschool Stereoacuity test.
Better baseline stereoacuity was associated with better baseline amblyopic eye acuity (
P < 0.001), less anisometropia (
P = 0.03), and anisometropia due to astigmatism alone (
P < 0.001). Better outcome stereoacuity was associated with better baseline stereoacuity (
P < 0.001) and better amblyopic eye acuity at outcome (
P < 0.001). Among 48 subjects whose amblyopic eye visual acuity at outcome was 20/25 or better and within one line of the fellow eye, stereoacuity was worse than that of children with normal vision of the same age.
In children with anisometropic amblyopia of 20/40 to 20/100 inclusive, better posttreatment stereoacuity is associated with better baseline stereoacuity and better posttreatment amblyopic eye acuity. Even if their visual acuity deficit resolves, many children with anisometropic amblyopia have stereoacuity worse than that of nonamblyopic children of the same age.
Stereoacuity in children with anisometropic amblyopia
PURPOSE: To determine factors associated with pretreatment and posttreatment stereoacuity in subjects with moderate anisometropic amblyopia. METHODS: Data for subjects enrolled in seven studies conducted by the Pediatric Eye Disease Investigator Group were pooled. The sample included 633 subjects aged 3 to <18 years with anisometropic amblyopia, no heterotropia observed by cover test, and baseline amblyopic eye acuity of 20/100 or better. A subset included 248 subjects who were treated with patching or Bangerter filters and had baseline stereoacuity testing and outcome examinations. Multivariate regression models identified factors associated with baseline stereoacuity and with outcome stereoacuity as measured by the Randot Preschool Stereoacuity test. RESULTS: Better baseline stereoacuity was associated with better baseline amblyopic eye acuity (P < 0.001), less anisometropia (P = 0.03), and anisometropia due to astigmatism alone (P < 0.001). Better outcome stereoacuity was associated with better baseline stereoacuity (P < 0.001) and better amblyopic eye acuity at outcome (P < 0.001). Among 48 subjects whose amblyopic eye visual acuity at outcome was 20/25 or better and within one line of the fellow eye, stereoacuity was worse than that of children with normal vision of the same age. CONCLUSIONS: In children with anisometropic amblyopia of 20/40 to 20/100 inclusive, better posttreatment stereoacuity is associated with better baseline stereoacuity and better posttreatment amblyopic eye acuity. Even if their visual acuity deficit resolves, many children with anisometropic amblyopia have stereoacuity worse than that of nonamblyopic children of the same age
Recommended from our members
Complications Occurring Through 5 Years Following Primary Intraocular Lens Implantation for Pediatric Cataract
Importance Lensectomy with primary intraocular lens (IOL) implantation is often used in the management of nontraumatic pediatric cataract, but long-term data evaluating the association of age and IOL location with the incidence of complications are limited. Objective To describe the incidence of complications and additional eye surgeries through 5 years following pediatric lensectomy with primary IOL implantation and association with age at surgery and IOL location. Design, Setting, and Participants This prospective cohort study used Pediatric Eye Disease Investigator Group cataract registry data from 61 institution- and community-based practices over 3 years (June 2012 to July 2015). Participants were children younger than 13 years without baseline glaucoma who had primary IOL implantation (345 bilateral and 264 unilateral) for nontraumatic cataract. Data analysis was performed between September 2021 and January 2023. Exposures Lensectomy with primary IOL implantation. Main Outcome and Measures Five-year cumulative incidence of complications by age at surgery (<2 years, 2 to <4 years, 4 to <7 years, and 7 to <13 years) and by IOL location (sulcus vs capsular bag) were estimated using Cox proportional hazards models. Results The cohort included 609 eyes from 491 children (mean [SD] age, 5.6 [3.3] years; 261 [53%] male and 230 [47%] female). Following cataract extraction with primary IOL implantation, a frequent complication was surgery for visual axis opacification (VAO) (cumulative incidence, 32%; 95% CI, 27%-36%). Cumulative incidence was lower with anterior vitrectomy at the time of IOL placement (12%; 95% CI, 8%-16%) vs without (58%; 95% CI, 50%-65%), and the risk of undergoing surgery for VAO was associated with not performing anterior vitrectomy (hazard ratio [HR], 6.19; 95% CI, 3.70-10.34; P < .001). After adjusting for anterior vitrectomy at lens surgery, there were no differences in incidence of surgery for VAO by age at surgery (<2 years, HR, 1.35 [95% CI, 0.63-2.87], 2 to <4 years, HR, 0.86 [95% CI, 0.44-1.68], 4 to <7 years, HR, 1.06 [95% CI, 0.72-1.56]; P = .74) or by capsular bag vs sulcus IOL fixation (HR, 1.22; 95% CI, 0.36-4.17; P = .75). Cumulative incidence of glaucoma plus glaucoma suspect by 5 years was 7% (95% CI, 4%-9%), which did not differ by age after controlling for IOL location and laterality. Conclusions and Relevance In this cohort study, a frequent complication following pediatric lensectomy with primary IOL was surgery for VAO, which was associated with primary anterior vitrectomy not being performed but was not associated with age at surgery or IOL location. The risk of glaucoma development across all ages at surgery suggests a need for long-term monitoring