3,434 research outputs found
Attacks on the Search-RLWE problem with small errors
The Ring Learning-With-Errors (RLWE) problem shows great promise for
post-quantum cryptography and homomorphic encryption. We describe a new attack
on the non-dual search RLWE problem with small error widths, using ring
homomorphisms to finite fields and the chi-squared statistical test. In
particular, we identify a "subfield vulnerability" (Section 5.2) and give a new
attack which finds this vulnerability by mapping to a finite field extension
and detecting non-uniformity with respect to the number of elements in the
subfield. We use this attack to give examples of vulnerable RLWE instances in
Galois number fields. We also extend the well-known search-to-decision
reduction result to Galois fields with any unramified prime modulus q,
regardless of the residue degree f of q, and we use this in our attacks. The
time complexity of our attack is O(nq2f), where n is the degree of K and f is
the residue degree of q in K. We also show an attack on the non-dual (resp.
dual) RLWE problem with narrow error distributions in prime cyclotomic rings
when the modulus is a ramified prime (resp. any integer). We demonstrate the
attacks in practice by finding many vulnerable instances and successfully
attacking them. We include the code for all attacks
Recommended from our members
Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra.
The bacterium Mycobacterium tuberculosis (Mtb) causes tuberculosis and is responsible for more human mortality than any other single pathogen1. Progression to active disease occurs in only a fraction of infected individuals and is predicted by an elevated type I interferon (IFN) response2-7. Whether or how IFNs mediate susceptibility to Mtb has been difficult to study due to a lack of suitable mouse models6-11. Here, we examined B6.Sst1S congenic mice that carry the 'susceptible' allele of the Sst1 locus that results in exacerbated Mtb disease12-14. We found that enhanced production of type I IFNs was responsible for the susceptibility of B6.Sst1S mice to Mtb. Type I IFNs affect the expression of hundreds of genes, several of which have previously been implicated in susceptibility to bacterial infections6,7,15-18. Nevertheless, we found that heterozygous deficiency in just a single IFN target gene, Il1rn, which encodes interleukin-1 receptor antagonist (IL-1Ra), is sufficient to reverse IFN-driven susceptibility to Mtb in B6.Sst1S mice. In addition, antibody-mediated neutralization of IL-1Ra provided therapeutic benefit to Mtb-infected B6.Sst1S mice. Our results illustrate the value of the B6.Sst1S mouse to model IFN-driven susceptibility to Mtb, and demonstrate that IL-1Ra is an important mediator of type I IFN-driven susceptibility to Mtb infections in vivo
Mig6 haploinsufficiency protects mice against streptozotocin-induced diabetes
AIMS/HYPOTHESIS:
EGF and gastrin co-administration reverses type 1 diabetes in rodent models. However, the failure of this to translate into a clinical treatment suggests that EGF-mediated tissue repair is a complicated process and warrants further investigation. Thus, we aimed to determine whether EGF receptor (EGFR) feedback inhibition by mitogen-inducible gene 6 protein (MIG6) limits the effectiveness of EGF therapy and promotes type 1 diabetes development.
METHODS:
We treated Mig6 (also known as Errfi1) haploinsufficient mice (Mig6 (+/-)) and their wild-type littermates (Mig6 (+/+)) with multiple low doses of streptozotocin (STZ), and monitored diabetes development via glucose homeostasis tests and histological analyses. We also investigated MIG6-mediated cytokine-induced desensitisation of EGFR signalling and the DNA damage repair response in 832/13 INS-1 beta cells.
RESULTS:
Whereas STZ-treated Mig6 (+/+) mice became diabetic, STZ-treated Mig6 (+/-) mice remained glucose tolerant. In addition, STZ-treated Mig6 (+/-) mice exhibited preserved circulating insulin levels following a glucose challenge. As insulin sensitivity was similar between Mig6 (+/-) and Mig6 (+/+) mice, the preserved glucose tolerance in STZ-treated Mig6 (+/-) mice probably results from preserved beta cell function. This is supported by elevated Pdx1 and Irs2 mRNA levels in islets isolated from STZ-treated Mig6 (+/-) mice. Conversely, MIG6 overexpression in isolated islets compromises glucose-stimulated insulin secretion. Studies in 832/13 cells suggested that cytokine-induced MIG6 hinders EGFR activation and inhibits DNA damage repair. STZ-treated Mig6 (+/-) mice also have increased beta cell mass recovery.
CONCLUSIONS/INTERPRETATION:
Reducing Mig6 expression promotes beta cell repair and abates the development of experimental diabetes, suggesting that MIG6 may be a novel therapeutic target for preserving beta cell
Recommended from our members
IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction.
Emerging evidence suggests that the T helper 17 (T(H)17) subset of αβ T cells contributes to the development of allergic asthma. In this study, we found that mice lacking the αvβ8 integrin on dendritic cells did not generate T(H)17 cells in the lung and were protected from airway hyper-responsiveness in response to house dust mite and ovalbumin sensitization and challenge. Because loss of T(H)17 cells inhibited airway narrowing without any obvious effects on airway inflammation or epithelial morphology, we examined the direct effects of T(H)17 cytokines on mouse and human airway smooth muscle function. Interleukin-17A (IL-17A), but not IL-17F or IL-22, enhanced contractile force generation of airway smooth muscle through an IL-17 receptor A (IL-17RA)-IL-17RC, nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-ras homolog gene family, member A (RhoA)-Rho-associated coiled-coil containing protein kinase 2 (ROCK2) signaling cascade. Mice lacking integrin αvβ8 on dendritic cells showed impaired activation of this pathway after ovalbumin sensitization and challenge, and the diminished contraction of the tracheal rings in these mice was reversed by IL-17A. These data indicate that the IL-17A produced by T(H)17 cells contributes to allergen-induced airway hyper-responsiveness through direct effects on airway smooth muscle
Orienteering with One Endomorphism
In supersingular isogeny-based cryptography, the path-finding problem reduces
to the endomorphism ring problem. Can path-finding be reduced to knowing just
one endomorphism? It is known that a small endomorphism enables polynomial-time
path-finding and endomorphism ring computation (Love-Boneh [36]). An
endomorphism gives an explicit orientation of a supersingular elliptic curve.
In this paper, we use the volcano structure of the oriented supersingular
isogeny graph to take ascending/descending/horizontal steps on the graph and
deduce path-finding algorithms to an initial curve. Each altitude of the
volcano corresponds to a unique quadratic order, called the primitive order. We
introduce a new hard problem of computing the primitive order given an
arbitrary endomorphism on the curve, and we also provide a sub-exponential
quantum algorithm for solving it. In concurrent work (Wesolowski [54]), it was
shown that the endomorphism ring problem in the presence of one endomorphism
with known primitive order reduces to a vectorization problem, implying
path-finding algorithms. Our path-finding algorithms are more general in the
sense that we don't assume the knowledge of the primitive order associated with
the endomorphism.Comment: 40 pages, 1 figure; 3rd revision implements small corrections and
expositional improvement
Transit times and mean ages for nonautonomous and autonomous compartmental systems
We develop a theory for transit times and mean ages for nonautonomous
compartmental systems. Using the McKendrick-von F\"orster equation, we show
that the mean ages of mass in a compartmental system satisfy a linear
nonautonomous ordinary differential equation that is exponentially stable. We
then define a nonautonomous version of transit time as the mean age of mass
leaving the compartmental system at a particular time and show that our
nonautonomous theory generalises the autonomous case. We apply these results to
study a nine-dimensional nonautonomous compartmental system modeling the
terrestrial carbon cycle, which is a modification of the Carnegie-Ames-Stanford
approach (CASA) model, and we demonstrate that the nonautonomous versions of
transit time and mean age differ significantly from the autonomous quantities
when calculated for that model
Validity, cut-points, and minimally important differences for two hot flash-related daily interference scales
OBJECTIVES:
To conduct psychometric analyses to condense the Hot Flash-Related Daily Interference Scale (HFRDIS) into a shorter form termed the Hot Flash Interference (HFI) scale; evaluate cut-points for both scales; and establish minimally important differences (MIDs) for both scales.
METHODS:
We analyzed baseline and postrandomization patient-reported data pooled across three randomized trials aimed at reducing vasomotor symptoms (VMS) in 899 midlife women. Trials were conducted across five MsFLASH clinical sites between July 2009 and October 2012. We eliminated HFRDIS items based on experts' content validity ratings and confirmatory factor analysis, and evaluated cut-points and established MIDs by mapping HFRDIS and HFI to other measures.
RESULTS:
The three-item HFI (interference with sleep, mood, and concentration) demonstrated strong internal consistency (alphas of 0.830 and 0.856), showed good fit to the unidimensional "hot flash interference factor," and strong convergent validity with HFRDIS scores, diary VMS, and menopausal quality of life. For both scales, cut-points of mild (0-3.9), moderate (4-6.9), and severe (7-10) interference were associated with increasing diary VMS ratings, sleep, and anxiety. The average MID was 1.66 for the HFRDIS and 2.34 for the HFI.
CONCLUSIONS:
The HFI is a brief assessment of VMS interference and will be useful in busy clinics to standardize VMS assessment or in research studies where response burden may be an issue. The scale cut-points and MIDs should prove useful in targeting those most in need of treatment, monitoring treatment response, and interpreting existing and future research findings
Ziram, a pesticide associated with increased risk for Parkinson's disease, differentially affects the presynaptic function of aminergic and glutamatergic nerve terminals at the Drosophila neuromuscular junction
Multiple populations of aminergic neurons are affected in Parkinson's disease (PD), with serotonergic and noradrenergic loci responsible for some non-motor symptoms. Environmental toxins, such as the dithiocarbamate fungicide ziram, significantly increase the risk of developing PD and the attendant spectrum of both motor and non-motor symptoms. The mechanisms by which ziram and other environmental toxins increase the risk of PD, and the potential effects of these toxins on aminergic neurons, remain unclear. To determine the relative effects of ziram on the synaptic function of aminergic versus non-aminergic neurons, we used live-imaging at the Drosophila melanogaster larval neuromuscular junction (NMJ). In contrast to nearly all other studies of this model synapse, we imaged presynaptic function at both glutamatergic Type Ib and aminergic Type II boutons, the latter responsible for storage and release of octopamine, the invertebrate equivalent of noradrenalin. To quantify the kinetics of exo- and endo- cytosis, we employed an acid-sensitive form of GFP fused to the Drosophila vesicular monoamine transporter (DVMAT-pHluorin). Additional genetic probes were used to visualize intracellular calcium flux (GCaMP) and voltage changes (ArcLight). We find that at glutamatergic Type Ib terminals, exposure to ziram increases exocytosis and inhibits endocytosis. By contrast, at octopaminergic Type II terminals, ziram has no detectable effect on exocytosis and dramatically inhibits endocytosis. In contrast to other reports on the neuronal effects of ziram, these effects do not appear to result from perturbation of the UPS or calcium homeostasis. Unexpectedly, ziram also caused spontaneous and synchronized bursts of calcium influx (measured by GCaMP) and electrical activity (measured by ArcLight) at aminergic Type II, but not glutamatergic Type Ib, nerve terminals. These events are sensitive to both tetrodotoxin and cadmium chloride, and thus appear to represent spontaneous depolarizations followed by calcium influx into Type II terminals. We speculate that the differential effects of ziram on Type II versus Type Ib terminals may be relevant to the specific sensitivity of aminergic neurons in PD, and suggest that changes neuronal excitability could contribute to the increased risk for PD caused by exposure to ziram. We also suggest that the fly NMJ will be useful to explore the synaptic effects of other pesticides associated with an increased risk of PD
Sonographic Evaluation for Endometrial Polyps
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135550/1/jum201635112381.pd
- …