150 research outputs found

    Vocabulary memory formed during deep sleep persists at least for 36 hours, if word pairs are encoded during a slow-wave down-state

    Get PDF
    We recently published an experiment showing that vocabulary learning during deep sleep is possible (Züst et al., 2019). Here, we present the results of a follow-up study, in which we investigated (1) for how long sleep-formed lexical-semantic associations persist in memory and (2) how their formation is neurophysiologically mediated. Pairs of pseudowords and German words were played to 30 sleeping participants for their unconscious formation of semantic associations between pseudowords and translation words. Sleep-generated memory formation was probed 12 and 36 hours after sleep-learning. We were particularly interested in the role of the slow oscillation (SO) phase that is most conducive to sleeplearning. Using an EEG-acoustic stimulation closed-loop algorithm we aligned the onset of word presentations to the up- (15 participants) or the down-state (15 participants) of SO. The new semantic word associations, formed during slow-wave sleep were stored into wakefulness and influenced decision-making at retrieval testing up to at least 36 hours following sleep-learning. Participants retrieved significantly more associations if the word pairs had been played during a SO down-phase versus a SO up-phase. Hence, the coincidence of word presentation with a particular phase of the ongoing SO is critical in determining whether the played information is stored long-term or not. Findings suggest that hippocampally mediated semantic paired-associative learning and long-term storage is feasible during human slow-wave sleep

    Rapid Formation and Flexible Expression of Memories of Subliminal Word Pairs

    Get PDF
    Our daily experiences are incidentally and rapidly encoded as episodic memories. Episodic memories consist of numerous associations (e.g., who gave what to whom where and when) that can be expressed flexibly in new situations. Key features of episodic memory are speed of encoding, its associative nature, and its representational flexibility. Another defining feature of human episodic memory has been consciousness of encoding/retrieval. Here, we show that humans can rapidly form associations between subliminal words and minutes later retrieve these associations even if retrieval words were conceptually related to, but different from encoding words. Because encoding words were presented subliminally, associative encoding, and retrieval were unconscious. Unconscious association formation and retrieval were dependent on a preceding understanding of task principles. We conclude that key computations underlying episodic memory – rapid encoding and flexible expression of associations – can operate outside consciousness

    Subliminally and Supraliminally Acquired Long-Term Memories Jointly Bias Delayed Decisions

    Get PDF
    Common wisdom and scientific evidence suggest that good decisions require conscious deliberation. But growing evidence demonstrates that not only conscious but also unconscious thoughts influence decision-making. Here, we hypothesize that both consciously and unconsciously acquired memories guide decisions. Our experiment measured the influence of subliminally and supraliminally presented information on delayed (30–40 min) decision-making. Participants were presented with subliminal pairs of faces and written occupations for unconscious encoding. Following a delay of 20 min, participants consciously (re-)encoded the same faces now presented supraliminally along with either the same written occupations, occupations congruous to the subliminally presented occupations (same wage-category), or incongruous occupations (opposite wage-category). To measure decision-making, participants viewed the same faces again (with occupations absent) and decided on the putative income of each person: low, low-average, high-average, or high. Participants were encouraged to decide spontaneously and intuitively. Hence, the decision task was an implicit or indirect test of relational memory. If conscious thought alone guided decisions (= H0), supraliminal information should determine decision outcomes independently of the encoded subliminal information. This was, however, not the case. Instead, both unconsciously and consciously encoded memories influenced decisions: identical unconscious and conscious memories exerted the strongest bias on income decisions, while both incongruous and congruous (i.e., non-identical) subliminally and supraliminally formed memories canceled each other out leaving no bias on decisions. Importantly, the increased decision bias following the formation of identical unconscious and conscious memories and the reduced decision bias following to the formation of non-identical memories were determined relative to a control condition, where conscious memory formation alone could influence decisions. In view of the much weaker representational strength of subliminally vs. supraliminally formed memories, their long-lasting impact on decision-making is noteworthy

    Inverse forgetting in unconscious episodic memory.

    Get PDF
    Forming memories of experienced episodes calls upon the episodic memory system. Episodic encoding may proceed with and without awareness of episodes. While up to 60% of consciously encoded episodes are forgotten after 10 h, the fate of unconsciously encoded episodes is unknown. Here we track over 10 h, which are filled with sleep or daytime activities, the retention of unconsciously and consciously experienced episodes. The episodes were displayed in cartoon clips that were presented weakly and strongly masked for conscious and unconscious encoding, respectively. Clip retention was tested for distinct clips directly after encoding, 3 min and 10 h after encoding using a forced-choice test that demands deliberate responses in both consciousness conditions. When encoding was conscious, retrieval accuracy decreased by 25% from 3 min to 10 h, irrespective of sleep or wakefulness. When encoding was unconscious, retrieval accuracy increased from 3 min to 10 h and depended on sleep. Hence, opposite to the classic forgetting curve, unconsciously acquired episodic memories strengthen over time and hinge on sleep on the day of learning to gain influence over human behavior

    Closed-loop modulation of local slow oscillations in human NREM sleep.

    Get PDF
    Slow-wave sleep is the deep non-rapid eye-movement (NREM) sleep stage that is most relevant for the recuperative function of sleep. Its defining property is the presence of slow oscillations (<2 Hz) in the scalp electroencephalogram (EEG). Slow oscillations are generated by a synchronous back and forth between highly active UP-states and silent DOWN-states in neocortical neurons. Growing evidence suggests that closed-loop sensory stimulation targeted at UP-states of EEG-defined slow oscillations can enhance the slow oscillatory activity, increase sleep depth, and boost sleep's recuperative functions. However, several studies failed to replicate such findings. Failed replications might be due to the use of conventional closed-loop stimulation algorithms that analyze the signal from one single electrode and thereby neglect the fact that slow oscillations vary with respect to their origins, distributions, and trajectories on the scalp. In particular, conventional algorithms nonspecifically target functionally heterogeneous UP-states of distinct origins. After all, slow oscillations at distinct sites of the scalp have been associated with distinct functions. Here we present a novel EEG-based closed-loop stimulation algorithm that allows targeting UP- and DOWN-states of distinct cerebral origins based on topographic analyses of the EEG: the topographic targeting of slow oscillations (TOPOSO) algorithm. We present evidence that the TOPOSO algorithm can detect and target local slow oscillations with specific, predefined voltage maps on the scalp in real-time. When compared to a more conventional, single-channel-based approach, TOPOSO leads to fewer but locally more specific stimulations in a simulation study. In a validation study with napping participants, TOPOSO targets auditory stimulation reliably at local UP-states over frontal, sensorimotor, and centro-parietal regions. Importantly, auditory stimulation temporarily enhanced the targeted local state. However, stimulation then elicited a standard frontal slow oscillation rather than local slow oscillations. The TOPOSO algorithm is suitable for the modulation and the study of the functions of local slow oscillations

    Subliminally and Supraliminally Acquired Long-Term Memories Jointly Bias Delayed Decisions

    Get PDF
    Common wisdom and scientific evidence suggest that good decisions require conscious deliberation. But growing evidence demonstrates that not only conscious but also unconscious thoughts influence decision-making. Here, we hypothesize that both consciously and unconsciously acquired memories guide decisions. Our experiment measured the influence of subliminally and supraliminally presented information on delayed (30–40 min) decision-making. Participants were presented with subliminal pairs of faces and written occupations for unconscious encoding. Following a delay of 20 min, participants consciously (re-)encoded the same faces now presented supraliminally along with either the same written occupations, occupations congruous to the subliminally presented occupations (same wage-category), or incongruous occupations (opposite wage-category). To measure decision-making, participants viewed the same faces again (with occupations absent) and decided on the putative income of each person: low, low-average, high-average, or high. Participants were encouraged to decide spontaneously and intuitively. Hence, the decision task was an implicit or indirect test of relational memory. If conscious thought alone guided decisions (= H0), supraliminal information should determine decision outcomes independently of the encoded subliminal information. This was, however, not the case. Instead, both unconsciously and consciously encoded memories influenced decisions: identical unconscious and conscious memories exerted the strongest bias on income decisions, while both incongruous and congruous (i.e., non-identical) subliminally and supraliminally formed memories canceled each other out leaving no bias on decisions. Importantly, the increased decision bias following the formation of identical unconscious and conscious memories and the reduced decision bias following to the formation of non-identical memories were determined relative to a control condition, where conscious memory formation alone could influence decisions. In view of the much weaker representational strength of subliminally vs. supraliminally formed memories, their long-lasting impact on decision-making is noteworthy

    Der Traum vom Lernen im Schlaf

    Get PDF
    Lernen ist anstrengend und braucht viel Zeit. Wie praktisch wäre es doch, wenn wir im Schlaf lernen könnten! Das ist gar nicht so utopisch, wie Berner Forschende hier berichten

    Focus on emotion as a catalyst of memory updating during reconsolidation

    Get PDF
    We share the idea of Lane et al. that successful psychotherapy exerts its effects through memory reconsolidation. To support it, we add further evidence that a behavioral interference may trigger memory update during reconsolidation. Furthermore, we propose that-in addition to replacing maladaptive emotions-new emotions experienced in the therapeutic process catalyze reconsolidation of the updated memory structur

    Larger capacity for unconscious versus conscious episodic memory

    Get PDF
    Episodic memory is the memory for experienced events. A peak competence of episodic memory is the mental combination of events to infer commonalities. Inferring commonalities may proceed with and without consciousness of events. Yet what distinguishes conscious from unconscious inference? This question inspired nine experiments that featured strongly and weakly masked cartoon clips presented for unconscious and conscious inference. Each clip featured a scene with a visually impenetrable hiding place. Five animals crossed the scene one-by-one consecutively. One animal trajectory represented one event. The animals moved through the hiding place, where they might linger or not. The participants' task was to observe the animals' entrances and exits to maintain a mental record of which animals hid simultaneously. We manipulated information load to explore capacity limits. Memory of inferences was tested immediately, 3.5 or 6 min following encoding. The participants retrieved inferences well when encoding was conscious. When encoding was unconscious, the participants needed to respond intuitively. Only habitually intuitive decision makers exhibited a significant delayed retrieval of inferences drawn unconsciously. Their unconscious retrieval performance did not drop significantly with increasing information load, while conscious retrieval performance dropped significantly. A working memory network, including hippocampus, was activated during both conscious and unconscious inference and correlated with retrieval success. An episodic retrieval network, including hippocampus, was activated during both conscious and unconscious retrieval of inferences and correlated with retrieval success. Only conscious encoding/retrieval recruited additional brain regions outside these networks. Hence, levels of consciousness influenced the memories' behavioral impact, memory capacity, and the neural representational code

    Can a serious game-based cognitive training attenuate cognitive decline related to Alzheimer's disease? Protocol for a randomized controlled trial.

    Get PDF
    BACKGROUND Alzheimer's disease (AD) is a major public health issue. Cognitive interventions such as computerized cognitive trainings (CCT) are effective in attenuating cognitive decline in AD. However, in those at risk of dementia related to AD, results are heterogeneous. Efficacy and feasibility of CCT needs to be explored in depth. Moreover, underlying mechanisms of CCT effects on the three cognitive domains typically affected by AD (episodic memory, semantic memory and spatial abilities) remain poorly understood. METHODS In this bi-centric, randomized controlled trial (RCT) with parallel groups, participants (planned N = 162, aged 60-85 years) at risk for AD and with at least subjective cognitive decline will be randomized to one of three groups. We will compare serious game-based CCT against a passive wait list control condition and an active control condition (watching documentaries). Training will consist of daily at-home sessions for 10 weeks (50 sessions) and weekly on-site group meetings. Subsequently, the CCT group will continue at-home training for an additional twenty-weeks including monthly on-site booster sessions. Investigators conducting the cognitive assessments will be blinded. Group leaders will be aware of participants' group allocations. Primarily, we will evaluate change using a compound value derived from the comprehensive cognitive assessment for each of three cognitive domains. Secondary, longitudinal functional and structural magnetic resonance imaging (MRI) and evaluation of blood-based biomarkers will serve to investigate neuronal underpinnings of expected training benefits. DISCUSSION The present study will address several shortcomings of previous CCT studies. This entails a comparison of serious game-based CCT with both a passive and an active control condition while including social elements crucial for training success and adherence, the combination of at-home and on-site training, inclusion of booster sessions and assessment of physiological markers. Study outcomes will provide information on feasibility and efficacy of serious game-based CCT in older adults at risk for AD and will potentially generalize to treatment guidelines. Moreover, we set out to investigate physiological underpinnings of CCT induced neuronal changes to form the grounds for future individually tailored interventions and neuro-biologically informed trainings. TRIAL REGISTRATION This RCT was registered 1st of July 2020 at clinicaltrials.gov (Identifier NCT04452864)
    corecore