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Highlights 

 Slow oscillations (SOs) of human NREM sleep are a local phenomenon 

 Different local SOs are associated with distinct brain functions of sleep 
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 Closed-loop stimulation of local SOs might be used to enhance/alter their 

functions 

 TOPOSO is a novel closed-loop stimulation algorithm for modulation of local 

SOs 

 TOPOSO targets topographically local SOs with high spatiotemporal precision 
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1 Abstract 

Slow-wave sleep is the deep non-rapid eye-movement (NREM) sleep stage that 

is most relevant for the recuperative function of sleep. Its defining property is the 

presence of slow oscillations (<2 Hz) in the scalp electroencephalogram (EEG). Slow 

oscillations are generated by a synchronous back and forth between highly active UP-

states and silent DOWN-states in neocortical neurons. Growing evidence suggests that 

closed-loop sensory stimulation targeted at UP-states of EEG-defined slow 

oscillations can enhance the slow oscillatory activity, increase sleep depth, and boost 

sleep’s recuperative functions. However, several studies failed to replicate such 

findings. Failed replications might be due to the use of conventional closed-loop 

stimulation algorithms that analyze the signal from one single electrode and thereby 

neglect the fact that slow oscillations vary with respect to their origins, distributions, 

and trajectories on the scalp. In particular, conventional algorithms nonspecifically 

target functionally heterogeneous UP-states of distinct origins. After all, slow 

oscillations at distinct sites of the scalp have been associated with distinct functions. 

Here we present a novel EEG-based closed-loop stimulation algorithm that allows 

targeting UP- and DOWN-states of distinct cerebral origins based on topographic 

analyses of the EEG: the topographic targeting of slow oscillations (TOPOSO) 

algorithm. We present evidence that the TOPOSO algorithm can detect and target 

local slow oscillations with specific, predefined voltage maps on the scalp in real-

time. When compared to a more conventional, single-channel-based approach, 

TOPOSO leads to fewer but locally more specific stimulations in a simulation study. 

In a validation study with napping participants, TOPOSO targets auditory stimulation 

reliably at local UP-states over frontal, sensorimotor, and centro-parietal regions. 

Importantly, auditory stimulation temporarily enhanced the targeted local state. 

However, stimulation then elicited a standard frontal slow oscillation rather than local 

slow oscillations. The TOPOSO algorithm is suitable for the modulation and the study 

of the functions of local slow oscillations. 

 

Keywords: slow-wave sleep, NREM, eeg, closed-loop stimulation, local sleep  
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2 Introduction 

Slow-wave sleep (SWS) is the deep, restorative sleep stage that helps us to 

recover from our daily activity. It is vital for our mental and physical health. Recent 

research has provided groundbreaking insights into the processes and mechanisms by 

which SWS contributes to health (Abel et al., 2013; Bodizs, 2021; Frank & Heller, 

2018; Lanza et al., 2022; Zielinski et al., 2016). First of all, SWS was found to help 

maintain synaptic homeostasis (Tononi & Cirelli, 2020). During SWS, unused and 

obsolete synaptic connections are down-scaled to compensate for the net synaptic 

growth and potentiation that occurred during prior wakefulness. This process prevents 

excessive synaptic potentiation, increases the signal-to-noise ratio of neuronal activity, 

and thereby renews our learning capacity. Slow-wave sleep was further found to 

contribute to memory consolidation by allowing memories that were formed during 

the day to be reactivated and replayed in the absence of other ongoing cognitive 

activity. Repeated memory reactivation during sleep strengthens the replayed 

memories and integrates them into existing knowledge (Klinzing et al., 2019; Rasch & 

Born, 2013). Further functions that have been associated with SWS are removal of 

metabolic waste from the brain (Xie et al., 2013), cellular and DNA repair in the brain 

(Vyazovskiy & Harris, 2013; Zada et al., 2019), and even the formation of 

immunological memory (Besedovsky et al., 2012). 

Recent insights into the mechanisms and functions of slow-wave sleep have led 

to a quest for tools to enhance this precious sleep stage in order to boost its effects on 

cognition and health (Choi et al., 2020; Geiser et al., 2020; Grimaldi et al., 2020; 

Scholes et al., 2020; Talamini & Juan, 2020; Wunderlin et al., 2021). Interestingly, 

sensory and especially auditory stimulation during sleep can be used to entrain and 

enhance the slow oscillatory electric activity in the EEG that defines SWS. During 

SWS, cortical neurons oscillate between hyperpolarized and therefore inactive 

―DOWN‖-states, and depolarized and highly active ―UP‖-states. Both states last 

between 0.25 and 1 s each. The back and forth between these two states occurs in a 

highly synchronized manner which induces strong electrical fields that manifest in the 

scalp EEG as slow oscillations with frequencies between 0.5 and 2 Hz (Iber et al., 

2007). Hence the term slow-wave sleep. There is compelling evidence that sensory - 
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especially auditory - stimulation temporarily enhances the slow oscillatory activity 

during sleep if stimulation is applied during the EEG-defined ―UP‖-state (Danilenko 

et al., 2020; Ngo et al., 2015; Santostasi et al., 2016). UP-targeted stimulation 

probably increases the synchronicity between neurons’ back and forth between UP- 

and DOWN-states. 

UP-state targeted closed-loop auditory stimulation during sleep was not only 

found to temporarily enhance slow oscillations in the EEG, but to boost the cognitive 

and biological functions of SWS. Several studies suggested that closed-loop auditory 

stimulation can improve overnight memory retention in young (Ngo, Martinetz, et al., 

2013; Ong et al., 2016) and old (Papalambros et al., 2017) adults. Other studies 

reported improved hippocampus-dependent learning on the next day (Ong et al., 2018) 

- probably due to enhanced synaptic down-scaling during sleep. A full night of UP-

state targeted auditory stimulation was also found to improve immune function 

(Besedovsky et al., 2017) and autonomic regulation (Grimaldi et al., 2019). 

Unfortunately, determining the presence of slow oscillations from the scalp 

EEG for targeting stimulation at neuronal UP-states is not trivial because slow 

oscillations are a heterogeneous phenomenon. High-density EEG recordings of sleep 

suggest that there exist different subtypes of slow oscillations - some representing a 

global phenomenon on the scalp, and some being more local in that they only involve 

a few electrodes (Bernardi et al., 2018). Slow oscillations further are not stationary but 

appear to travel across the scalp (Massimini et al., 2004). Source modeling of sleep 

EEG recordings confirmed that single slow oscillations have distinct origins and 

unique propagation patterns in the cortex (Murphy et al., 2009), and that different 

local slow oscillations can coexist (Riedner et al., 2007). Intracranial recordings in 

humans further suggested that most slow oscillations are a local rather than a brain-

wide phenomenon (Mak-McCully et al., 2015; Nir et al., 2011). 

Different subtypes of slow oscillations might exert different functions in the 

brain. This is indirectly suggested by the finding that the scalp distribution of 

spontaneous slow oscillatory activity during SWS mirrors prior experience as well as 

individual differences in cognitive abilities (see e.g. Avvenuti & Bernardi, 2022 for an 
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up-to-date review on local sleep). For example, scalp maps of sleep slow oscillations 

change as a function of prior learning - potentially due to local changes in the need for 

synaptic renormalization (Huber et al., 2004, 2006) as well as due to locally restricted 

neuronal activity related to the consolidation of newly acquired skills and memories 

(Fattinger et al., 2017; Mascetti et al., 2013). Slow oscillations are thus locally 

regulated in a use-dependent manner (Avvenuti & Bernardi, 2022). The topographic 

pattern of slow oscillatory activity is further known to change throughout adolescence 

(Kurth et al., 2010, 2012; Ringli & Huber, 2011) and with aging (Landolt & Borbély, 

2001; Sprecher et al., 2016), and these changes are associated with skill maturation in 

adolescents (Kurth et al., 2012), and presumably with cognitive decline (Mander et al., 

2013, 2017) in the elderly. Finally, different individuals show unique but stable, trait-

like topographic distributions of slow oscillatory activity that might reflect individual 

differences in brain organization and function (Markovic et al., 2018). Successful 

enhancement or modulation of specific sleep functions by means of closed-loop 

stimulation might thus require stimulation techniques that are capable of precise 

targeting of the relevant local slow-oscillations. 

To the best of our knowledge, all existing EEG-based algorithms for slow 

oscillation phase-targeted stimulation ignore the fact that slow oscillations are a 

spatially heterogeneous phenomenon. All currently used algorithms analyze the signal 

from one single location (one single electrode, e. g. Fz, or the average signal from a 

patch of neighboring electrodes) referenced to pooled mastoids (standard reference in 

sleep research) to determine the current phase of ongoing slow oscillations and to 

predict and target upcoming ―UP-‖ and ―DOWN-‖ states (Cox et al., 2014; Ngo et al., 

2015; Santostasi et al., 2016; Sousouri et al., 2021). Single-channel EEG provides 

little information about the location and the polarity of the neuronal generator of a 

wave-form, i.e. about where in the brain a slow oscillation is most prominent, and 

whether the involved neurons are in an UP- or in a DOWN-state. Existing algorithms 

thus most likely target a very heterogeneous set of slow oscillations with different 

scalp maps and distinct cortical origins and trajectories. The fate of a phase-targeted 

stimulus, i.e. whether and where it elicits (or interrupts) a slow oscillation in the brain, 

might not only depend on the phase of ongoing slow oscillations (Schabus et al., 
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2012), but also on their origin in the brain (Sousouri et al., 2021).  

Although some studies observed that UP-state targeted auditory stimulation can 

improve the cognitive and health benefits of SWS, other studies failed to replicate 

these findings (Henin et al., 2019; Wunderlin et al., 2021). For example, older adults 

showed reduced entrainment and enhancement of slow oscillations during stimulation 

(Schneider et al., 2020) and their overnight memory consolidation did not improve 

with stimulation (Papalambros et al., 2019; Schneider et al., 2020; Wunderlin et al., 

2021). The contradictory findings on the effect of UP-state targeted stimulation could 

result from the fact that studies did not take into account the heterogeneous nature of 

slow oscillations. If, for example, slow oscillatory patterns during SWS change 

throughout adolescence (Kurth et al., 2010, 2012; Ringli & Huber, 2011) and with age 

(Landolt & Borbély, 2001; Sprecher et al., 2016), the same stimulation algorithm 

might target different UP-states and thus yield different effects on sleep’s functions in 

children, young adults, and the elderly. 

Phase-targeted stimulation might provide more consistent insights into the 

function of sleep and might yield more reliable and replicable effects on behavior if 

only those subtypes of local slow oscillations were targeted that are thought to be 

relevant for a specific research question or a specific aim. For example, phase-

dependent stimulation might improve the consolidation of a newly learned motor skill 

during sleep following learning only if stimulation targets slow oscillations in the 

motor cortex (Fattinger et al., 2017; Huber et al., 2004). We suggest that specific local 

slow oscillations can be identified and targeted by analyzing the temporal evolution of 

the voltage distribution in the scalp EEG, i.e. the scalp maps, instead of or in addition 

to the wave-form of the voltage of single channels. Although determining the exact 

cortical source of an EEG signal is non-trivial, there is agreement that specific, 

recurring and temporarily stable scalp maps must reflect specific brain states that can 

be attributed to specific neuronal processes in well-described cortical sites or networks 

(Michel & Koenig, 2018). These maps can be targeted in real-time in closed-loop 

applications (Diaz Hernandez et al., 2016). 

Studying or modulating the function of slow oscillations of a specific cortical 

                  



 MODULATION OF LOCAL SLOW OSCILLATIONS 

8/69 

site or network by means of stimulation requires that stimulation is synchronized with 

ongoing slow oscillatory activity within this site or network – i.e., stimulation must be 

timed to the local UP- or DOWN-phase of the respective cortical site or network. 

Importantly, slow oscillations vary substantially with respect to the degree of their 

―localness‖, i.e. their spatial extent on the scalp and within the brain. In fact, two 

distinct subtypes of slow oscillations (Bernardi et al., 2018; Malerba et al., 2019; 

Mensen et al., 2016; Siclari et al., 2014) have been identified: spatially restricted 

―local‖ type-II slow oscillations with relatively low amplitudes, and widespread, high-

amplitude type-I oscillations. Type-II oscillations are visible on only a few 

neighboring EEG electrodes (hence the term ―local‖). They are generated by 

corticocortical synchronization mechanisms and are subject to homeostatic decline 

across the night. Type-I oscillations involve many neighboring electrodes. They are 

generated by subcortical processes that depend on the arousal system, and they show 

no sign of homeostatic regulation. The distinction between spatially restricted 

(―local‖) vs. widespread slow oscillations thus allows identifying and targeting 

different neuronal synchronization processes and distinct homeostatic regulation 

mechanisms during sleep (Bernardi et al., 2018; Siclari et al., 2014). However, this 

distinction does not inform about the specific cortical site or network that is most 

directly involved in generating a single, specific slow oscillation. Whether the specific 

slow oscillation is spatially restricted to the specific cortical target site or network, or 

whether it spans across many cortical sites might be of minor relevance for the effect 

of stimulation on the local cortical computation and the local synaptic processes. The 

local impact of stimulation is theorized to mainly depend on whether or not the 

targeted site or network is currently in a neuronal UP- or DOWN-state (Vyazovskiy et 

al., 2009). These states might be best identified by means of the propagation of their 

electric field to the scalp, i.e. by means of their voltage distribution on the scalp 

(Michel & Koenig, 2018). 

We propose a novel closed-loop stimulation algorithm that predicts and targets 

upcoming local UP- and DOWN-states of slow oscillations with high temporal and 

topographic precision: the topographic targeting of slow oscillations (TOPOSO) 

algorithm. Local UP-/DOWN-states are here defined as peaks/troughs of scalp EEG 
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oscillations between 0.5 to 2 Hz that are most prominent over a specific region of 

interest on the scalp (e.g. over electrode Fz, which would be stereotypical frontal slow 

oscillations (Massimini et al., 2004), or electrode C4, which would be slow-

oscillations in the right sensorimotor cortex (Krugliakova et al., 2020)). To target such 

UP-/DOWN-states, the TOPOSO algorithm continuously assesses the similarity 

between the current voltage distribution of the EEG on the scalp and the voltage 

distribution of precomputed template maps of the targeted UP- or DOWN-states. The 

algorithm aims to detect transitions into local UP-/DOWN-states based on the 

temporal evolution of the similarity between EEG scalp maps and template maps and 

on the wave-form of the EEG signal over the targeted locus. This approach may target 

both, spatially restricted type-II slow oscillations, as well as widespread type-I 

oscillation (Bernardi et al., 2018; Malerba et al., 2019; Siclari et al., 2014). The 

algorithm is supposed to detect transitions into local UP- or DOWN-states with well 

defined scalp maps in near real time and to leave enough time to trigger stimulation at 

the actual peak of the upcoming UP- or DOWN-state. In simulations performed on 

pre-recorded data, we assessed whether using scalp maps in addition to single-channel 

data leads to fewer but more precise stimulations. In a sham-controlled within-subject 

experiment, we explored whether we are able to target auditory stimulations at local 

UP-states over different cortical regions (Fz, C4, CPz). We assessed the impact of 

auditory stimulation on the targeted local UP-state and explored whether stimulation 

would induce subsequent local slow oscillations over the targeted sites. The TOPOSO 

successfully detected upcoming local UP-states over frontal, sensorimotor, and centro-

parietal regions and allowed for steering auditory stimulation accurately, leading to an 

initial brief enhancement of the target state. Following this brief enhancement of the 

target state, the stimulation used here elicited – due to its auditory nature – a standard 

frontal slow oscillation rather than local slow oscillations. 

3 Description of the TOPOSO algorithm 

3.1 Aim and rationale 

Local slow oscillations are generated by a highly coordinated back and forth 

between depolarized UP- and hyperpolarized DOWN-phases of the neurons within a 
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specific, isolated cortical region or network (Nir et al., 2011). Here, it is assumed that 

the electric fields induced by the coordinated UP- and DOWN-phases of these specific 

neurons yield scalp maps that have a high spatial similarity but show inverse 

polarities, i.e. scalp maps that are anticorrelated. Local slow oscillations should thus 

manifest as sequences of prominent, highly similar, anticorrelated scalp maps with 

well-defined transitions between these states. Previous work indeed suggested that 

UP- and DOWN-states of auditory evoked frontal slow oscillation show highly similar 

but anticorrelated maps (r > | -.95|, see supplementary table S6 in Züst et al., 2019). 

During a local slow-oscillation, the correlation between EEG scalp maps and the 

predefined scalp map of a specific target state (e.g. an UP-state over the motor cortex) 

should thus initially be highly negative (preceding DOWN-state), but should rapidly 

transition to a highly positive correlation (target UP-state). This rapid transition should 

occur during a time-window representative of ¼ to ½ of the wavelength of slow-

oscillations. By detecting such rapid transitions in real time, it should be possible to 

predict and target upcoming local- UP- or DOWN-states. Here, transitions are 

detected whenever the correlation between the current scalp EEG map and the scalp 

map of the predefined map of the target state is negative but is rapidly increasing in a 

slow-oscillation specific time window, and the voltage of the EEG over the target 

region is negative but increasing for transitions to UP-states, or positive but 

decreasing for transitions to DOWN-states. 

The TOPOSO algorithm builds on the assumption that template maps, which 

are representative of specific targeted local slow oscillation UP- and DOWN-states, 

can be obtained from training data by post-hoc detecting slow oscillations in the 

respective EEG channel. Maps are generated by averaging the scalp maps of single 

UP-/DOWN states of only the most prominent (high-amplitude) slow oscillations that 

were post-hoc identified over respective target electrodes (e.g. Fz, see Fig. 7 for 

examples of template maps; see chapter 3.3 for template generation). Template maps 

can be obtained either from sleep data of a baseline night of the same subject, or from 

sleep data of a representative sample of subjects. The resulting maps can be used to 

assess how the similarity between real-time EEG data and a specific map evolves in 

time. A rapid and consistent increase in similarity should indicate an upcoming local 
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UP- or DOWN-state.  

The TOPOSO algorithm detects a transition into an upcoming UP- (or DOWN-

) state if all of the following conditions are fulfilled: (A) the similarity between the 

actual scalp EEG map and the scalp map of the target UP- (DOWN-) state is 

constantly increasing but (B) is still negative for the majority of the recent data 

samples; (C) the mean voltage over electrodes at the target site (e.g. Fz) is increasing 

(decreasing for DOWN-states) but (D) is still negative (positive) for the majority of 

the recent samples. 

To detect transitions into UP-/DOWN-states, the TOPOSO algorithm analyzes 

the temporal evolution of the real time EEG in a data window with a duration that is 

based on the prototypical frequency of slow oscillations. Human slow oscillations 

peak at frequencies between 0.5- 1.0 Hz (Achermann & Borbély, 1997), which yields 

a duration of about 500 ms between peaks of consecutive UP- and DOWN-states at 

the upper frequency boundary. The time sequence between two states (e.g. from 

DOWN- to UP-state; see Figure 1) can be divided in 4 time windows: (1) post-peak, 

(2) pre-zero-crossing (highlighted in Figure 1, left panel), (3) post-zero-crossing, and 

(4) pre-peak. The earliest possible time window for reliably detecting a transition is at 

the zero-crossing, i.e. by analyzing the pre-zero-crossing time window. At frequencies 

of 0.5-1 Hz, the pre-zero-crossing time window is expected to have a minimal 

duration of about 125 ms. This corresponds to 1/8th of the wavelength at 1 Hz. 

Therefore, the most recent 122 ms of real-time EEG data are used for detecting 

transitions into UP-/DOWN- states (61 samples at 500 Hz sampling rate). 

The TOPOSO algorithm operates on unfiltered EEG data. Preprocessing only 

involves the following steps: removal of EOG-, EMG-, and artifact-laden EEG-

channels, de-trending of each single channel, and re-referencing to the common 

average. Then, the relevant features are extracted at every data sample: the voltage 

over the target electrode (or the average voltage of a set of target electrodes), and the 

correlation of the scalp map with the template map. 
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We expected that both the absolute amplitudes of the EEG and the correlation 

between EEG scalp maps and template maps would vary between subjects (due to 

differences in skin and skull conductivity, head geometry, neuroanatomy, and the fit 

of EEG caps). To reduce the influence of interindividual differences in signal quality 

on algorithm performance, only the sign (+/-) of the correlation/voltage at each time-

point as well as the sign of the sample-to-sample change in correlation/voltage instead 

of absolute values is analyzed. Thus, the TOPOSO algorithm ignores the actual 

amplitude of the voltage and the magnitude of the correlation and uses exclusively the 

sign of these values and the sign of the relative change in these values.  

3.2 Formal description 

Put formally, a transition into an UP- or a DOWN-state is detected if all four of 

the following conditions are fulfilled at the same time, i.e., during the analysis of the 

time series of the n most recent samples of EEG data. 

 

Figure 1:Visualization of the TOPOSO algorithm (a) and its implementation (b). a) the voltage over the target 

EEG channel (green) and the similarity between the scalp EEG and the template scalp map (template 

correlation; blue) for one slow oscillation. The DOWN-state, the transition between states, and the UP-state are 

highlighted. The gray bar indicates the time-window based on which the transition into the UP-state is detected. 

The criteria used to detect a transition are illustrated at the bottom: >50% and >75% indicate the percentages 

of samples within the time window that must meet each criterium for the algorithm to detect a transition into a 

local UP-state.The two scalp maps indicate the used EEG-measure to compute the feature (template 

correlation, focal voltage). b) sketch of the implementation of the algorithm for closed-loop applications. 
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(A) The correlation corr (similarity) between the EEG (S) and the template map 

T is increasing for at least C1 of the recent n samples: 

∑ (
(    (      )      (    ))

|(    (      )      (    ))|
        )   

   

   
    

(B) The correlation between the EEG (S) and the template map T is still 

negative for at least C2 of the recent n samples: 

∑ (
  (      (    ))
|      (    )|

        ) 
   

 
    

(C) The voltage at the target site (referenced to the global average) is 

increasing for at least C1 of the recent n samples: 

∑ (
(       )
|(       )|

        )   
   

   
    

(D) The voltage is still negative for at least C2 of the recent n samples: 

∑ (
  (    )
|(    )|

        ) 
   

 
    

Where n = number of samples (61) used for analysis, vi = the voltage over the 

target electrode at sample i, Si = the vector with the voltage distribution (scalp map) 

over all electrodes at sample i, T = the vector with the voltage distribution of the target 

state (template map), p = the polarity of the target state (= +1 for transitions to UP-

states, = -1 for transitions to DOWN-states), C1 and C2 = pre-defined criteria. 

To find optimal parameters for C1 and C2, we assessed how the TOPOSO 

algorithm would perform on pre-recorded EEG data for all possible combinations of 

C1 and C2. For a detailed description of this procedure see chapter 3.6 Parameter 

optimization: evaluation of optimal detection criteria. For each parameter 

combination, we determined the average number of detected transitions into UP- and 

DOWN-states, the mean amplitude of the target states, and the time between the 

detection of a transition and the actual amplitude peak. Visual inspection of these 
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descriptive statistics suggested that optimal parameters were C1 = 75% and C2 = 50%. 

The criteria were identical for the conditions regarding the voltage, and the conditions 

regarding the correlation between the EEG and the template maps. Hence, the 

criterion of C1 = 75% was used for conditions (A) and (C), and a criterion of C2 = 

50% for conditions (B) and (D) (see chapter 3.5 Validation of computational rationale 

for the reasoning behind this). Importantly, optimal parameters for C1 and C2 were 

determined for frontal electrodes only (target electrode Fz) because we assumed that 

EEG data frontal electrodes provide the best possible ground truth for the presence of 

slow oscillations. This assumption builds on the observation that slow oscillations 

originate most frequently over frontal regions (Massimini et al., 2004). Parameters 

were kept identical for other, non-frontal sites to ensure that the algorithm always 

targets the same oscillatory phenomenon. 

3.3 Template generation 

3.3.1 Procedure 

To assess whether meaningful and distinct scalp maps for local UP- and 

DOWN-states can be generated, we first extracted scalp maps focused on the 

following 12 electrodes/regions on the 10-20 grid: Fz, Cz, Pz, Oz, F5, F6, T7, T8, C5, 

C6, P5, P6 (Table 1). Template maps for local UP-/DOWN-states were extracted from 

pre-recorded EEG data (for details about the data samples, see chapter 3.3.2). 

First, EOG and EMG channels were removed and data were re-referenced to 

the global average, which allowed us to retrieve the original reference at Fz. Next, the 

target signal was extracted by averaging the voltage over electrodes centered around 

the site of interest (e.g. AF1, AFz, AF2, F3, Fz and F4 for the target Fz, Table 1). 

Using the average of a set of nearby electrodes instead of just one single electrode 

provides a more robust signal. The target signal was bandpass filtered at 0.15 - 2 Hz. 

Then, all data segments containing non-rapid eye movement (NREM) sleep were 

selected. In these segments, we identified all data snippets between consecutive 

positive-to-negative zero crossings as potential slow oscillations if the snippets had a 

duration between 0.9 and 2 s (reflecting oscillations in the range between 0.5 to 1.11 

Hz). Only candidate events with a trough-to-peak amplitude exceeding ⅔ of the 
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trough-to-peak amplitudes of all candidate events were kept as slow oscillations. For 

each selected slow oscillation, we determined the negative-to-positive zero-crossing as 

the center of the oscillation. 

To generate scalp templates for UP- and DOWN-states, we bandpass filtered 

the raw EEG signal from 0.3 to 35 Hz, re-referenced it to the global average, and then 

extracted ERPs centered on the negative-to-positive zero-crossing for each of the 

previously identified slow oscillations. For the UP-state template, we then extracted 

the peak after the zero-crossing (about 0.5s later) in every identified slow oscillation. 

Similarly, for the DOWN-state template, we extracted the trough before the zero-

crossing (about 0.5s before) in every slow oscillation. Scalp maps were computed by 

taking the average maps of all samples +/- 40 ms around the trough/peak. The maps 

were normalized by dividing the voltage at each channel by the maximum absolute 

voltage of all channels.  
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Table 1: Electrodes used for creating an average signal of the target site. 

Target site Electrodes centered around the target site 

Fz AF1, AFz, AF2, F3, Fz, F4 

Cz C3, C1, Cz, C2, C4 

Pz P3, Pz, P4, POz 

Oz O1, Ol1, Oz, Ol2, O2 

F5 Fp1, F7, F5, F3, FC5 

F6 Fp2, F8, F6, F4, FC6 

T7 FT9, FT7, T7, TP7, TP9 

T8 FT10, FT8, T8, TP8, TP10 

C5 FC5, T7, C5, C3 CP5 

C6 FC6, T8, C6, C4 CP6 

P5 TP9, P7, P5, P3 

P6 TP10, P8, P6, P4 

Note: The target signal for each target site was extracted by averaging the voltage 

over the electrodes centered around the site of interest. Using the average of a set 

of nearby electrodes instead of just one single electrode provides a more robust 

signal. 

3.3.2 Origin of EEG data 

To create template maps for the detection of local UP-/DOWN-states, we used 

pre-recorded EEG data of N3 sleep. Data had been recorded during an afternoon nap 

in a sample of N = 39 participants (age = 19-32, M ± SD = 23.4 ± 3.5; 29 (74%) 

female) in a previous study on vocabulary learning during sleep (Züst et al., 2019). All 

participants were mentally and physically healthy and right-handed. Subjects were 

restricted to 4 h of sleep the night before the experiment. Sleep recordings started 

between 12:40 and 14:50 and lasted about 90 min (M ± SD = 93.5 ± 33.1 min). 

Participants were played pairs of foreign words and German words via headphones 

while asleep. For further details on the study procedure, see (Züst et al., 2019). Two 

subjects from the original study (N= 41) were excluded due to large signal drifts on a 

few electrodes. 
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3.4 Template validation 

Visual inspection of the topographies of the UP- and DOWN-state templates 

that were extracted for the twelve target sites suggested that all templates reflected 

unique and highly distinct electrical fields (Figure 2, left panel). Inspection of the 

dipole fits for each template map confirmed that each template reflected a brain state 

that was most likely generated by a cortical dipole at the or close to the site of the 

target electrodes. Dipole fitting was performed for each template map assuming one 

single dipole. Fitting was done in fieldtrip (Oostenveld et al., 2011), using the default 

boundary element method (bem) with the volume conduction model of the head that is 

provided by fieldtrip. This head model is based on the segmentation by Collins et al. 

(Collins et al., 1998) and was constructed as reported in Oostenveld (Oostenveld et al., 

2003). 

3.5 Validation of computational rationale 

The TOPOSO algorithm builds on the assumption that a data window of 122 

ms duration (61 samples of EEG data) is adequate for detecting transitions into UP- 

and DOWN-states in real-time. The algorithm is further based on the premises that the 

following parameters (respectively the signs of their values) are relevant features for 

detecting transitions into UP-/DOWN-states: the voltage at the target site, the sample-

to-sample fluctuation of the voltage, the correlation between EEG and template maps, 

and the sample-to-sample fluctuation of the correlation.  

When we developed TOPOSO, we wanted to assess the validity of the core 

assumptions of the algorithm and wanted to obtain first estimates for the optimal 

thresholds for detecting transitions into UP-/DOWN- states in realtime. To achieve 

this, we explored how the four relevant parameters on which TOPOSO operates 

evolve over time with respect to post-hoc detected transitions into UP- and DOWN-

states. The computed parameters included (A) the percentage of samples in which the 

correlation between EEG scalp maps and the template map is increasing, (B) the 

percentage of samples where this correlation is still negative, (C) the percentage of 

samples where the voltage at the target site is increasing (or decreasing, for UP- vs. 

DOWN-states, respectively), and (D) the percentage of samples where the voltage is 
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negative (or positive, for UP- vs. DOWN-states). The features were computed for data 

segments of 122 ms duration (61 samples) at a moving interval of 2 ms for a 4 s data 

window that was centered around the transition into UP- states as well into DOWN-

states of post-hoc detected slow oscillations. Post-hoc detected slow oscillations 

served as ground truth for the presence of UP-/DOWN-states. We used the time point 

of the zero crossing of the signal from the target electrode in these oscillations as 

ground truth for the transition into UP-/DOWN-states. The analysis was performed on 

the same data that were used to generate the templates (see chapter 3.3.2 Origin of 

EEG data). We used the post-hoc detected slow oscillation events that we had used to 

extract the template maps (see chapter 3.3.1 Procedure) as ground truth for the 

presence of UP- and DOWN-states. The analysis was performed for the targeting of 

frontal slow oscillations (Fz) only because slow oscillations tend to originate over 

prefrontal regions (Massimini et al., 2004). EEG data derived from frontal electrodes 

thus provide the best possible ground truth for the presence of slow oscillations. 

A visual inspection of the temporal evolution of our features revealed that the 

percentage of samples where the voltage (feature D) was positive (or negative) was 

maximal at the peak-time of the post-hoc defined UP- (or DOWN-) state. The same 

was true for percentage of samples where the correlation between EEG scalp maps 

and the target map was positive (feature B). More importantly, the percentage of 

samples where the sign of the voltage (feature D) was still negative (or positive) was 

about 50% at the time of the zero crossing of the DOWN-to-UP-state (or UP-to-

DOWN) transition. The same was observed for the percentage of samples where the 

correlation with the template was still negative (feature B). This suggested that a 

threshold of 50% for the criterion C2 of the TOPOSO algorithm (see 3.2 Formal 

description) would be optimal. The percentage of samples where the sign of the 

sample-to-sample variation in the voltage (feature C) from the target site was positive 

(or negative), i.e., where the voltage was increasing (or decreasing), was maximal at 

the time of the transition from the DOWN- to the UP-state (or UP-to-DOWN). The 

same was true for the percentage of samples where the sample-to-sample variation in 

the correlation between EEG maps and the template map (feature A) was increasing. 

Importantly, the maximal values for the sample-to-sample variations of both the 
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voltage and the correlation was about 70%. This indicated that a threshold of >70% 

would be optimal for criterion C1. Finally, the temporal evolution of the features for 

the voltage and for the features of the correlation between EEG and template maps 

were highly similar, (features A and C, as well as features B and D). This suggested 

that identical thresholds for the criteria C1 and C2 can be used for the voltage and the 

correlation.  

3.6 Parameter optimization: evaluation of optimal detection criteria 

To find optimal thresholds for the detection criteria C1 and C2, we performed 

simulations in which we applied TOPOSO to pre-recorded EEG data. We simulated 

how TOPOSO would perform with different combinations of thresholds for C1 and 

C2. Thresholds ranged between 20% and 95% for each criterion (5% intervals), 

yielding 16 thresholds for each criterion and a total of 256 different threshold 

combinations (i.e., 256 simulations). 

Simulations were performed on pre-recorded NREM sleep of the same data 

that were used to create the template maps for TOPOSO, i.e., the training data (for a 

description, see chapter 3.3.2 Origin of EEG data). We preprocessed the pre-recorded 

EEG data to match the data as it would be processed in real-time (de-trending, re-

referencing to global average; see as well chapter 4.1.2.1 Simulation of real-time 

detection of state transitions). Simulations were performed for frontal electrodes (Fz) 

only, because slow oscillations originate most frequently over the prefrontal cortex 

(Massimini et al., 2004). Frontal EEG data thus provide the best possible ground truth 

for the presence of slow oscillations. 

For each simulation run, we extracted the following parameters averaged 

across all N = 39 datasets: the average number of detected transitions into UP- and 

DOWN-states, the average peak amplitude of the ensuing UP-/DOWN-state at the 

target site, and the average delay between detection of a state-transition and the actual 

peak time of the ensuing UP-/DOWN-state. We plotted these parameters for all 

possible threshold combinations for C1 and C2. Visual inspection of these plots 

suggested that the thresholds C1 = 75% and C2 = 50% would be optimal for detecting 

a sufficient amount (mean events per minute of NREM sleep > 8) of transitions into 
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high-amplitude (mean amplitude >15 µV) UP- and DOWN-states with long enough 

delays (mean duration >100 ms) between detection of the transition and the 

occurrence of the actual UP-/DOWN-states to allow use in real-time applications. We 

thus used these thresholds for our studies.  

4 Validation on pre-recorded data 

To assess the precision, reliability, and validity of the TOPOSO algorithm, we 

applied it to pre-recorded EEG data. We simulated a real-time data stream using pre-

recorded sleep EEG data from an unpublished nap study and had our algorithm detect 

transitions into UP-states or DOWN-states. We did this separately for each of the 12 

selected target sites. We then analyzed the EEG data centered around the time stamps 

of the detected transitions. We assessed whether the TOPOSO algorithm indeed 

detects time-points during which the brain transitions into local UP- or DOWN-states 

with scalp maps that match the template of the targeted states. 

We further assessed whether using the similarity between scalp maps and 

template maps for detecting transitions into local UP-/DOWN-states (template-based 

algorithm) improves the topographic precision compared to an algorithm that only 

operates on a single EEG channel. To this aim, as a control condition, we modified the 

TOPOSO algorithm to only use the voltage of the EEG of the target site for detecting 

state transitions. We used this modified single-channel algorithm to detect transitions 

into UP-/DOWN-states in the same pre-recorded EEG data. 

4.1 Method 

4.1.1 Test sample 

The algorithm was tested on stage N3 sleep obtained from an additional set of 

pre-recorded EEG data that had not been used to generate the template maps of target 

states (see chapter 3.3.2). This data has been collected during an afternoon nap in a 

previously unreported sample of N = 21 (age = 18-28, M ± SD = 21.8 ± 2.6; 17 (81%) 

female) mentally and physically healthy participants. All participants were right-

handed. Participants were subjected to the same study protocol as the participants of 

the data used for template generation (Züst et al., 2019). 
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4.1.2 Procedure 

4.1.2.1 Simulation of real-time detection of state transitions 

We preprocessed the pre-recorded EEG data to match the data as it would be 

processed in real-time (de-trending, re-referencing to global average) and then applied 

the algorithm to all N3 segments of all data sets. This procedure was performed 

separately for each of the 12 selected target sites and for UP- vs. DOWN-states. All 

time points where the TOPOSO algorithm detected a transition into the specific UP-

/DOWN-state were marked for later analysis. The TOPOSO algorithm tended to 

repeatedly detect the transition into the same state across multiple subsequent time 

points. Only the first time point of such sequences was selected for analysis. Any 

additionally marked events within the next 800 ms were discarded (duration of a fast 

slow oscillation at 1.2 Hz) to avoid repeatedly sampling the same events. 

To assess how the TOPOSO algorithm performs compared to conventional 

algorithms that only use a single EEG channel (without topographic information) for 

detecting UP-/DOWN-states, we further ran simulations with a modified version of 

our algorithm that only uses the voltage of the target site for detecting state transitions. 

In this modified single-channel approach, only conditions C and D (see ―3.2 Formal 

description of the algorithm‖) had to be fulfilled for detecting a transition. We 

performed the same simulations (detection of UP-/DOWN-states at 12 selected target 

sites) as with the original version of our algorithm and compared the EEG between 

transitions detected between simulations. The same values were used for the criteria 

C1 and C2 for the TOPOSO algorithm and for the single-channel approach. 

4.1.2.2 Analysis of the detected state transitions 

For each detected transition, we extracted the event-related EEG centered 

around +/- 1 s of the transition. We computed the mean event-related potential (ERP), 

the mean correlation between the single-trial EEG and the template map, as well as 

the global field power (GFP; i.e., the spatial standard deviation at each sample 

(Skrandies, 1990)) of the trial-averaged ERP separately for each participant and each 

condition (UP-/DOWN-state and each site). These analyses were performed on 

bandpass filtered EEG signals (0.3 - 35 Hz). No further preprocessing was done. 
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Figure 3 illustrates the grand averages across all participants for these three 

parameters for transitions into UP-states separately for each target site. 

4.2 Results 

4.2.1 Successful detection of transitions into local UP-/DOWN-states 

Visual inspection of ERP topographies revealed that the TOPOSO algorithm 

indeed detects transitions into the targeted local state (Figure 2; due to space 

limitations, figures only illustrate the results of UP-state targets. Results are reported 

for both, UP- and DOWN-state targets, in the text. Supplementary Figures 1-3 

illustrate the results of DOWN-state targets).  

The time courses of the EEG, the GFP of the mean EEG and the correlation 

between EEG and template map indicate that the target state peaked at about 200 ms 

after the detected transition (Figure 3, Supplementary Figure 2 for DOWN-states). 

Interestingly, the transition was preceded by voltage distributions exactly opposing the 

target state. I.e., if the target state was a local peak, the detected transitions into this 

local peak were preceded by a local trough at the same target region at about –200 ms 

before the transition (Figure 3, Supplementary Figure 2 for DOWN-states). 

Furthermore, the half-wave which followed the detected transition and which peaked 

at the target site lasted on average about 500 ms, indicating that the detected events 

are parts of oscillatory patterns with a frequency of 1Hz. Taken together, these 

observations provide strong evidence that the TOPOSO algorithm responds to events 

that represent UP- and DOWN-states of slow oscillations. 
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Figure 2: Topographies of each targeted UP-state (template map in normalized units, left) and the average 

EEG topography over all trials displayed from 0.4s before to 0.4s after the detection of a transition (t=0), 

separately for each target site (ERP in µV). The EEG was averaged across +/- 50 ms for each depicted time-

point. The high similarity of the template map and the targeted brain state 200 ms (highlighted) after the 

detection of a transition suggests precise targeting of local UP-states. 
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For both, the single-channel algorithm and the TOPOSO algorithm, statistical 

assessment of the mean response over a 200 ms time window between 0.1 and 0.3 s 

following the detection of transition revealed that the mean ERP of the corresponding 

target channel differed significantly from 0. This was the case for DOWN-state targets 

as well as for UP-state targets. The same pattern was found for the mean correlation 

between the EEG scalp map and the template map (all t(20) > 13, all p < .001). 

4.2.2 Higher topographic precision than single-channel algorithm 

The TOPOSO algorithm is more selective and more precise in predicting the 

targeted brain states than an algorithm that operates on the voltage of single, local 

EEG channels. This was suggested by direct comparisons of transitions detected with 

the TOPOSO algorithm vs. the modified algorithm that is based exclusively on the 

voltage of local EEG channels (Figure 4, Supplementary Figure 3 for DOWN-states). 

The TOPOSO algorithm detected significantly fewer transitions into UP-/DOWN-

states, but the UP-/DOWN-states that followed the transitions had higher amplitudes 

at the target site, stronger correlations with the target templates, and higher GFP 

compared to states that followed transitions detected with the EEG (all paired-sample 

t-tests: t(20) > 3.4, p < 0.003). ERPs, correlations, and the GFP averaged over the time 

from 100 to 300 ms post transition were compared separately for each state 

(UP/DOWN) and each target site. The increased average GFP suggests that scalp 

maps of single detected events were on average more similar to each other, i.e. they 

were more homogeneous across detections, leading to a stronger electric field in the 

 

Figure 3: Event-related EEG activity relative to the detection of the transition (t = 0) into a local UP-state for 

each of the twelve target sites (color coded): a) event-related potential (µV) at the target site, b) correlation of 

the EEG with the template map, and d) global field power (GFP in µV) of the EEG. The ERP and the 

correlation with the template map reveal a similar prediction for each of the twelve target sites. Grey shades 

mark the time window (100 ms - 300 ms post transition) used for the analysis of the peak EEG. 
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average ERP. The elevated correlations suggest that these maps were also more 

similar to the target state. 

It is possible that TOPOSO and the single-channel algorithm differed with 

respect to the exact time-point at which targeted UP-/DOWN-states would peak. To 

assess whether such differences in timing could account for the observed differences 

in mean amplitude, we further extracted the peak amplitudes averaged from a time-

window centered around the exact peak times of each target site and state for both 

algorithms. We replicated the original finding that peak amplitudes were larger for 

TOPOSO than for the single-channel based approach in all but one template (all t > 

5.5 and all p < 0.001, except for T8: t= 1.17, p = 0.25). This strongly suggests that the 

reported differences between TOPOSO and the single-channel approach were a result 

of higher topographic precision and consistency of TOPOSO, rather than differences 

in temporal precision or in the timing of peaks. 

 

4.3 Discussion 

We assessed whether our newly proposed TOPOSO algorithm could be used in 

real-time to predict and target stimulation at UP- and DOWN-states of local slow 

 

Figure 4: Comparison between the template-based TOPOSO algorithm (TOPOSO) and a single-EEG-

channel-based (single channel only: SC-only) algorithm for UP-state targeting. Mean voltage (ERP in µV) at 

the target site (mean over adjacent electrodes), correlation between EEG scalp map and template map, and 

global field power (GFP in µV), all averaged across the time window from 0.1. to 0.3 s after detection of a 

transition; number of predicted states per minute (UP-states/min). Each panel displays mean and standard 

error of the mean (error bars) for each target site. All paired-samples contrasts for each target were 

significant at p < .003. 
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oscillations during sleep. To this aim, we performed simulations on pre-recorded EEG 

data in which we used our algorithm to target local up- and DOWN-states over 12 

different sites on the scalp. 

We found that the TOPOSO algorithm detects transitions into brain states with 

scalp maps that are highly similar to the template maps of the targeted UP-/DOWN-

states, and that are highly distinct from non-targeted templates (Figure 2, 

Supplementary Figure 1 for DOWN-states). Importantly, these brain states peak at 

about 200 ms after detection of the transitions, which would provide enough time to 

trigger stimulation during the target state in real-time applications. The targeted brain-

states have a duration of about 500 ms, which reflects half-waves of oscillatory events 

with a duration of ~ 1 s or a frequency of ~ 1 Hz, i.e. the frequency of human slow 

oscillations (Achermann & Borbély, 1997). Hence the TOPOSO algorithm appears 

suitable for real-time applications targeting local slow oscillations during sleep. 

In comparison to a single-channel based algorithm, the TOPOSO algorithm 

detects fewer transitions into target states, but the detected states are more 

homogeneous and more similar to the targeted states with respect to their scalp maps. 

Thus, due to its topographic specificity, the TOPOSO algorithm might be more 

suitable than conventional algorithms for closed-loop applications aimed at targeting 

local slow oscillations. 

 

Whether TOPOSO generally outperforms conventional single-channel based 

approaches with respect to topographic specificity and sensitivity remains to be tested. 

Here, we compared TOPOSO to a custom-made, single-channel based approach that 

exactly matches the computations of the TOPOSO algorithm except for the use of 

topographic information. This was done to demonstrate that adding topographic 

information improves topographic precision. We did not compare TOPOSO with the 

best possible versions of currently available single channel algorithms. It is possible 

that the topographic specificity of conventional, single-channel based algorithms 

could be improved to match the performance of TOPOSO. This might be achieved by 

applying more stringent selection criteria for detecting slow oscillations in the single-
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channel time series that is obtained from the site of interest. For example, the 

threshold that the amplitude of events in the single channel must exceed to qualify as 

slow oscillations could be increased. This might lead to the targeting of fewer, but 

more homogeneous local slow oscillations. Also, ensuring the presence of harmonic 

oscillations in the frequency of interest – for example by means of sine-wave fitting 

(Cox et al., 2014) – might prevent the false targeting of non-oscillatory noise and 

artifacts. Finally, increasing phase accuracy, i.e., the precision at which the phase of 

interest (UP- vs. DOWN-state) is targeted in the single-channel data via the use of a 

phase-locked loop (PLL; Santostasi et al., 2016) could improve homogeneity of 

stimulation. 

While conventional single-channel approaches might be tailored to match the 

topographic precision of TOPOSO, the strength of our algorithm lies in its theoretical 

foundation. TOPOSO builds on the broadly accepted assumption that recurring and 

temporarily quasi stable scalp maps – such as the local UP- and DOWN-states 

targeted here – reflect specific brain states that can be attributed to specific neuronal 

processes in well-described cortical sites or networks (Michel & Koenig, 2018). Using 

real-time analyses of the temporal evolution of the entire electric field on the scalp 

instead of the voltage in only one channel seems much more valid for targeting such 

states. A further advantage of TOPOSO is the fact that it does not depend on explicit 

definitions of amplitude thresholds for detecting slow oscillations. This makes it 

suitable for targeting low-amplitude slow oscillations as they occur in REM sleep, 

during wakefulness (Andrillon et al., 2021), or in SWS of the elderly (Wunderlin et 

al., 2022). 

5 Validation in a real-time application 

To assess the usefulness of the TOPOSO algorithm in a real closed-loop 

stimulation application, we performed a within-subject sham controlled study in 

which we tried to target UP-states of local slow oscillations over three distinct sites on 

the scalp. We tested whether the TOPOSO algorithm can be used in vivo in real-time 

for targeting auditory stimulation at local UP-states. The goal was to assess how 

precise the TOPOSO algorithm is at targeting local slow oscillations at the intended 
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phase, i.e. the UP-state. A further aim was to investigate the immediate impact of 

auditory stimulation on the targeted local UP-state, and to assess the influence of 

auditory stimulation on ensuing slow oscillatory and spindle activity, i.e. whether 

stimulation would be followed by additional local slow oscillations and local spindles 

at the targeted site. 

Local UP-states were targeted over the frontal (Fz), right central (C4), and 

centro-parietal (CPz) cortex in a within-subject sham-controlled study design. The 

frontal cortex was selected because the majority of slow oscillations tend to originate 

in prefrontal regions (Finelli et al., 2001; Nir et al., 2011), because frontal slow 

oscillations have been proposed to be most relevant in memory consolidation 

(Klinzing et al., 2019; Ngo, Martinetz, et al., 2013), because frontal slow oscillations 

tend to govern sensory processing and even learning during sleep (Andrillon et al., 

2016; Züst et al., 2019), and because most studies using phase-targeted closed-loop 

auditory stimulation focused on this region (Cox et al., 2014; Göldi et al., 2019; Ngo, 

Claussen, et al., 2013; Ngo et al., 2015; Ngo, Martinetz, et al., 2013; Santostasi et al., 

2016; Shimizu et al., 2018). The right-central electrode C4 was chosen due to its 

proximity to the sensorimotor cortex. Fattinger et al. reported that auditory stimulation 

targeted at the DOWN-state of slow oscillations detected over the left motor cortex 

(electrode C3) perturbed local but not global slow oscillatory activity at the targeted 

site (Fattinger et al., 2017). Importantly, perturbation of local slow oscillations was 

associated with impaired performance in a right-hand motor learning on the next day. 

Krugliakova et al. further suggested that UP-state targeted stimulation focusing on 

slow oscillations over the right motor cortex (C4) globally enhanced delta, theta, and 

sigma activity but also induced local changes in delta-sigma coupling in the right 

hemisphere (Krugliakova et al., 2020). These studies provide first evidence that local 

manipulation of sleep slow oscillations in the motor cortex is feasible and alters the 

local functions of sleep. The centro-parietal electrode CPz was selected because slow 

oscillations over this cortical region have been associated with absence of dreams 

during NREM sleep. Two studies investigating dreaming during NREM sleep 

revealed that humans are less likely to report dreams if wakened from NREM sleep 

that is dominated by high slow-wave activity over centroparietal regions (Siclari et al., 
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2017, 2018). Targeting and manipulating slow oscillations over these regions might 

thus provide a means to alter the frequency, vividness, or even content of dreams 

during NREM sleep. 

5.1 Method 

5.1.1 Implementation of the algorithm 

Data was recorded using the BrainVision Recorder software v2.0 by Brain 

Products. This software provides a remote data access (RDA) server that allows 

streaming data in realtime (in 5-sample data blocks) via TCP/IP protocol. 

The TOPOSO algorithm was implemented in MATLAB® and was running on 

a second computer that was connected to the recording computer via LAN cable. On 

this second computer, the ―rda2ft‖ interface provided by fieldtrip (Oostenveld et al., 

2011) streamed the real-time data to a buffer, from which it was read into a 

MATLAB® instance which was running the detection algorithm. The TOPOSO 

algorithm continuously scanned the buffer for new data, and performed the necessary 

operations to detect transitions into UP-states of interest. Upon every detection of a 

transition, an event marker was written to a second fieldtrip buffer. A second 

MATLAB® instance monitored this second buffer in realtime and triggered 

stimulation according to the current condition (stimulation vs. sham, with the 

respective target site and their specific delay). Sound onset and the EEG-marker were 

timely paired. Unfortunately, the EEG recording system did not allow to eliminate all 

time jitters, with which a jitter of up to 40 ms remained. 

Stimulation was carried out in blocks, i.e. stimulation targeted the same site 

(Fz, C4, CPz, sham) five times in sequence before moving to the next site. Once five 

stimulations were applied for the specific template (5 for each template in sham), or if 

more than 2 minutes passed without stimulation, the algorithm moved on to the next 

block. All 4 blocks were repeated for as long as possible, with shuffled block order for 

each repetition (Figure 5). This procedure ensured that a similar amount of 

stimulations was achieved for each condition within each participant independent of 

the absolute amount of stimulations. The auditory stimulus was a burst of pink 1/f 
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noise of 50 ms duration, with a rising and falling ramp of 5 ms (Ngo, Martinetz, et al., 

2013). No sound was presented in the sham condition . 

Each stimulus presentation was followed by a timeout of 2 s before the next 

sound could be played. Hence, the shortest possible time interval between consecutive 

stimulations was 2 s. This allowed for an unconfounded analysis of the impact of 

stimulation on the targeted slow oscillation UP-state and the ensuing slow oscillatory 

activity. 

 

The average loop time, i.e. the time it took the TOPOSO algorithm to analyze 

the EEG data, detect a target event, and trigger stimulus presentation, was 98 ± 19 ms 

(M ± SD. For a detailed description of the loop time assessment, please see 

Supplementary Methods). Because the algorithm detected transitions into UP- or 

DOWN-states that peak about 200 ms after this transition, an additional delay of ~ 

100 ms was added to the loop time of 98 ms before playing the click noise to hit the 

peak of the target state. Importantly, the average delay between the transition time 

point and the actual UP-state peak seemed to vary between target sites. Simulations 

performed on the N = 21 pre-recorded datasets suggested that the average delay was 

200 ms for Fz, 180 ms for C4, and 215 ms for CPz. Therefore a delay of 100 ms for 

Fz, 80 ms for C4, and 115 ms for CPz was added to the loop time of 98 ms before 

playing the click noise. 

 

Figure 5: Illustration of blocks of auditory stimulations targeting UP-states over different sites on the scalp (Fz, 

C4, CPz). Stimulation condition (Fz/C4/CPz) was switched after 5 successful stimulations in a given condition 

or if no stimulations occurred in more than 120 s. 
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5.1.2 Data collection 

5.1.2.1 Participants 

Twenty mentally and physically healthy subjects were recruited to participate 

in this study. The research protocol was approved by the institutional review board of 

the University of Bern, and informed consent was obtained from each participant. 

Eight participants failed to reach stable slow-wave sleep during the afternoon nap, 

leading to twelve remaining participants in the study (age = 23-31, M ± SD = 26.75 ± 

2.45, 6 (50%) female ). 

5.1.2.2 Procedure 

A short prescreening was performed during recruiting to exclude candidates 

with mental or physical health issues from participation. Participants were asked to 

sleep not more than 4 hours in the night prior to the experiment and to send a text 

message at the time they went to bed and at the time they got up to confirm 

compliance. Furthermore, participants were asked to abstain from caffeine on the day 

of testing until after the sleep recording. Participants arrived at the lab between noon 

and 2 pm, where the study procedure was explained and they were asked to give 

informed written consent. Participants were outfitted with EEG caps and with in-ear 

headphones (Pioneer, type SE-CL502_L) and were then asked to get prepared for 

taking a 90 minutes nap in a portable bed in the electromagnetically and acoustically 

shielded EEG cabin. Before lights were turned off and participants were allowed to 

sleep, a hearing test was administered. In this test, short beeps and tones were played 

at random intervals and randomly on the left or right ear. Participants indicated on 

which ear they heard a tone by pressing the according buttons on a keyboard. Four 

different types of beeps of 50 ms duration were presented: a pink noise tone, and pure 

tones with a frequency of 500 Hz, 1000 Hz and 2000 Hz. Overall, 20 beeps in 

symmetrical steps between 15 and 45 dB(A) per frequency and per ear, leading to an 

overall number of 160 beeps, were presented. The hearing test was implemented with 

the software Presentation
®

. After the hearing test, the keyboard was removed and 

participants were asked to relax and, if possible, sleep. Participants were informed that 

a click-sound similar to the pink noise played during the hearing test would be 
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presented during sleep. It was mentioned that stimulation only occurs during deep 

sleep and they therefore should not aim to hear anything, because focusing on pending 

auditory stimuli might hamper sleep quality. Afternoon naps started between 2 pm and 

4 pm, and lasted about 85 min (M = 85.5, SD = 21.6). When participants displayed 

stable NREM2 with visible slow-wave activity, the experimenter initiated auditory 

stimulation. Stimulation was started in NREM2 sleep, for multiple reasons: First, 

online rating of sleep stages can be challenging due to interindividual differences and 

we wanted to avoid missing opportunities for stimulation due to a misclassification of 

the current sleep phase. Second, the TOPOSO algorithm usually only stimulates if 

slow wave activity is present in the EEG. Thus, running the algorithm does not lead to 

random stimulations if a participant does not display slow waves. Third, we knew 

from piloting and from experience with our previous studies (Ruch et al., 2014; Züst 

et al., 2019) that auditory stimulation often enhances early slow wave activity and 

facilitates the progression into SWS. Finally, the initial stimulus intensity was below 

the participant’s hearing threshold but was increased within the first 10 – 20 

stimulations. Stimulus presentation was stopped if the EEG revealed signs of arousal. 

When a subject returned to stable NREM2 sleep, auditory stimulation was resumed, 

typically starting with a ramp up of the signal intensity over the first 5 - 10 

stimulations. If a participant failed to (re-)enter stable NREM2 sleep after 80 mins, the 

EEG recording was stopped. Only participants with at least 10 valid stimulations per 

condition were included in the data analysis (n = 12). 

To avoid that highly artifact laden or broken EEG channels could corrupt the 

temporal and topographic precision of TOPOSO, the experimenter constantly 

monitored the realtime data of all EEG channels as displayed the recording computer 

(continuously updated overview of the most recent 30 s of data). This allowed 

identifying artifact laden or broken EEG channels. If signal quality was constantly low 

an a specific channel, the experimenter excluded this channel from real time analysis 

via the user interface of TOPOSO (MATLAB® instance one). The experimenter 

further continuously monitored the user interface of TOPOSO. Th interface displayed 

a continuously updated 20 s overview of the time series of the realtime EEG signal of 

the target site (average signal of all relevant channels) and of the correlation between 
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EEG scalp maps and the template map. The interface further provided visual markers 

which indicated when TOPOSO had detected a target UP-state within the displayed 

time series. The experimenter thus could interrupt stimulation when either of the time 

series (realtime EEG, or correlation between EEG maps and template map) showed 

unusual patterns, or when the time points that were marked as UP-states did not align 

with peaks in these time series. 

5.1.2.3 EEG/Polysomnography 

EEG was recorded using 64 channel BrainCaps MR caps with sintered 

Ag/AgCl Multitrodes by EASYCAP (www.easycap.de) and two 32 channel amplifiers 

from BrainAmp (www.brainproducts.com). Two channels were used to assess eye 

movements, and one channel was used to assess the muscle tonus below the chin. The 

reference electrode was positioned at Fz, and the ground electrode at CPz. Impedances 

were kept < 20 k�. The software BrainVision Recorder (www.brainproducts.com) 

was used to record the EEG data. All signals were sampled at 500 Hz. Online 

polysomnographic visualization was performed according to AASM guidelines using 

the OpenViBE environment (Renard et al., 2010).  

5.1.3 Data analysis 

5.1.3.1 Offline sleep-scoring 

Offline sleep scoring was performed by two independent raters, according to 

AASM guidelines, using the software Polyman (http://www.edfplus.info/). With a 

Cohen’s K of .76, the rater agreement was substantial (McHugh, 2012). For stimulus 

inclusion, only the distinction between deep NREM (N2, N3) and all other sleep 

stages (awake, N1, REM) was of interest. In 12 of 3569 epochs (0.34 %), the raters 

disagreed in a way that was potentially relevant for the inclusion of stimuli. In those 

12 epochs, the score indicating the shallower sleep stage was used. 

5.1.3.2 EEG pre-processing 

After removing EOG and EMG channels from the raw data, all EEG channels 

were re-referenced to the common average. Next, the 50 Hz line noise and its 

harmonics was removed, and bad channels were identified and interpolated using the 
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PREP pipeline (Bigdely-Shamlo et al., 2015) as implemented in eeglab (Delorme & 

Makeig, 2004). The cleaned EEG data was then again referenced to the global average 

and was bandpass filtered between 0.25 and 100 Hz. 

Artifact laden data segments were identified and marked for later exclusion, 

using a semi-automated algorithm that was implemented in the fieldtrip toolbox 

(Oostenveld et al., 2011). Artifacts were identified based on high-frequency noise (if 

the boxcar-smoothed (window: 0.2 s) envelope of the 45-90 Hz frequency band 

exceeded 5 standard deviations in any of the channels), signal jumps (if the change in 

amplitude between two consecutive samples exceeded 30 standard deviations in any 

of channel), rogue channels, e.g. due to sweating (if the minimal difference in voltage 

of any channel with all other channels exceeded 4 standard deviations), and de-

correlated signals (if the difference between the actual data in a channel and its 

spherical interpolation exceeded 4 standard deviations). Artifacts were padded by 0.5 

s at both ends. The validity of this artifact detection pipeline was confirmed by visual 

inspection. 

Finally, EEG data was epoched from 2 s before to 2 s after stimulus onset for 

further analysis. For each epoch, the time-course of the correlation between EEG scalp 

maps and template maps of the respective condition was computed for additional 

analyses. 

5.1.3.3 Stimulus inclusion/exclusion 

Stimulations were considered valid if they occurred during NREM2 or NREM3 

sleep, and in absence of EEG artifacts within +/- 3 s of stimulus onset. In addition, 

stimulations had to be presented with a minimal stimulus intensity of 37 dB(A) to be 

included in the data analysis. For an overview of the overall number of included 

stimulations per condition per participant, see Table 2. On average, we presented M = 

41.67 (SD = 27.23) click sounds per subject, of which 85.22% of stimuli were played 

in N3 (SD = 17.65 %). 
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Table 2: Average number of stimulations per condition 

Condition Fz Fz sham C4 C4 sham CPz CPz 

sham 

average 

trials 

42.17 42.92 40.5 39.92 41.83 42.67 

SD 28.35 28.1 26.95 24.08 28.92 28.05 

5.1.3.4 Phase analysis 

To assess the accuracy of stimulation, the mean phase of the slow oscillation 

frequency band (< 4 Hz) was estimated for the time of stimulus onset. To this aim, the 

phase values of the Hilbert transform of the low-pass filtered (4 Hz) signal was 

extracted. The phase across all samples from 20 ms before to 20 ms after stimulus 

onset were averaged for each trial. This was done separately for the average signal of 

the respective target EEG channels as well as of the correlation between the EEG and 

the template map. Then, the mean phase for each experimental condition was 

computed separately for each participant. 

5.1.3.5 Current source density estimation 

Analyses of the post-stimulus ERP, the time-frequency decomposed signal, the 

post-stimulus power spectral density, and the post-stimulus phase-amplitude coupling 

were performed on current source density (CSD) estimates. CSD has the benefit that it 

provides a reference free signal with enhanced spatial resolution and specificity 

(Kayser & Tenke, 2015) compared to the raw EEG. CSD was estimated using the 

spherical spline method (Perrin et al., 1989, 1990) with default parameters as 

implemented in the fieldtrip toolbox (Oostenveld et al., 2011) for MATLAB®. 

5.1.3.6 Time-frequency analysis 

Event-related spectral changes were compared between the different 

experimental conditions. To this aim, the spectral power was estimated from 2 Hz to 

21 Hz at 1 Hz steps from 2 seconds before to 2 seconds after stimulus (40 ms steps, 

yielding a 25 Hz sampling rate) using discrete wavelet transformations. 

Transformations were performed with 3 wavelet cycles at the lowest frequency and a 

linear increase of 0.5 cycles per 1 Hz step to 12.5 cycles at the highest frequency. The 
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resulting power time series were normalized for each frequency at the single-trial level 

by first z-standardizing the time-series at each frequency and then subtracting the 

mean normalized power from -2 to -1 seconds before stimulus onset. These 

standardized time-frequency decompositions were then averaged within each 

condition separately for each participant. 

5.1.3.7 Analysis of phase-amplitude coupling 

Post-stimulus phase-amplitude coupling (PAC) comodulograms were 

compared between experimental conditions for the phase of frequencies from 0.6 to 5 

Hz (at 0.2 Hz steps) and the amplitude of frequencies between 4 and 40 Hz (at 1 Hz 

steps). De-biased PAC values as suggested by van Driel et al. (van Driel et al., 2015) 

were computed for each phase-amplitude combination. 

Phase values and amplitude envelopes were extracted for the data from 0 to 2 s 

after stimulus onset at 20 ms intervals (yielding a 50 Hz sampling rate) using discrete 

wavelet transformations. For phases, transformations were performed with one cycle 

at the lowest frequency of 0.6 Hz and a linear increase of 0.2 cycles per 0.2 Hz step to 

5.4 cycles at the highest frequency of 5 Hz. For amplitudes, transformations were 

performed using 3 cycles at the lowest frequency of 4 Hz with a linear increase of 0.5 

cycles per 1 Hz step to 21 cycles at the highest frequency of 40 Hz. The resulting PAC 

comodulograms were averaged within each condition separately for each subject. 

5.1.3.8 Significance testing 

For each dependent measure (ERP, time-frequency decomposition, and phase 

amplitude coupling), the impact of stimulation vs. sham was assessed separately for 

each target condition. Furthermore, the differential effects of frontal vs. right central 

vs. centro-parietal targeted stimulation were assessed by comparing the difference 

scores between stimulation vs. sham between all target sites using an omnibus test. 

Follow-up contrasts were performed between each target site in case the omnibus test 

yielded a significant difference. 

For the analysis of event-related potentials, topographic analyses of variance 

(TANOVA) were performed as proposed by Koenig and colleagues (Koenig et al., 
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2011, 2013). Cluster-based corrections for multiple comparisons in time were 

performed using 1000 permutations. 

For all other analyses, mass univariate analyses (t-tests or ANOVAs) were 

performed with cluster-based corrections for multiple comparisons using 1000 

permutations (Maris & Oostenveld, 2007). Cluster-formation threshold was set at p < 

.05 for all analyses. All tests were two-sided, clusters were said to be significant at 

alpha < .05. 

5.2 Results 

5.2.1 Precise targeting of the peak phase 

First, we assessed how precise the TOPOSO algorithm was at targeting the 

peak phase, i.e. the peak of the respective local UP-states. We extracted the mean 

slow-wave phase (<4 Hz) for the ERP over the site of interest, as well as for the time-

course of the correlation between the scalp map and the template map (Figure 6). 

Phase distributions were significantly non-uniform for both the ERP and 

correlation with the template maps for all targets (all p < .01, Hodges-Ajne omnibus-

tests (Zar, 1999) as implemented in the CircStat toolbox (Berens, 2009)). This 

suggests that the algorithm consistently targeted a specific phase. Stimulation 

preceded the peak by ~30° (Table 3 and Figure 6) in all target conditions, both for the 

ERP and the correlation with the template map. See Table 3 for mean phases and 95% 

confidence intervals of the phase (confidence intervals were computed as suggested 

by (Zar, 1999) and as implemented in the CircStat Toolbox (Berens, 2009) for 

MATLAB®). 
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Table 3: Mean phase & 95% CI at stimulus onset (stimulation and sham) for 

the EEG at the target site and the for the correlation between EEG scalp maps and the 

template map, separately for each target site. 

Target site Mean phase (95% 

CI): 

EEG 

Mean phase (95% CI): 

correlation 

Fz -28.55 (± 6.17) -34.40 (± 6.07) 

C4 -21.89 (± 9.36) -24.51 (± 8.18) 

CPz -26.15 (± 6.94) -26.28 (± 8.33) 

 

 

 

5.2.2 Stimulation temporarily enhances the targeted local UP-state  

Previous studies suggest that closed-loop auditory stimulation targeting frontal 

UP-states briefly enhances the amplitude of the targeted state before inducing a frontal 

DOWN-state (e.g. Ngo et al., 2015; Ngo, Martinetz, et al., 2013). Here, we 

investigated whether this phenomenon can also be observed when non-frontal UP-

states are targeted. To this aim, the following parameters were extracted for the the 

 

Figure 6: Slow oscillation phase at stimulation onset estimated for the EEG at the target site and for the time-

course of the correlation between EEG scalp maps and template maps. Upper row (target-eeg): Roseplots of 

phase of the target ERP with mean phase of each subject at the target site (red), mean phase across all subjects 

at target site (dark grey; vector-length = phase-coherence), 95% confidence interval around the group mean 

(light grey). Lower row (template-corr): Roseplots of phase of the template correlation with mean phase of each 

subject at the target site (red), mean phase across all subjects at target site (dark grey; vector-length = phase-

coherence), 95% confidence interval around mean (light grey). The rightmost column illustrates the 

correspondence between phase angle and slow oscillation states. The targeted UP-state is at 0°/360°. 
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first 200 ms following stimulus onset separately for each target site and state for each 

participant: mean amplitude at the target electrode averaged across all single trials, 

mean of the global field power of each single trial, topographic consistency reflecting 

the mean correlation between scalp maps of single trials and the average scalp map of 

these trials (Koenig & Melie-García, 2010), as well as the mean correlation between 

the scalp EEG and the template maps (Figure 7). All but one parameter were 

significantly elevated after stimulation vs. sham for all target sites (all p < .035, except 

for the template correlation at CPz: p = .223). The fact that the algorithm precisely 

targeted states with specific voltage distributions (see previous chapter) and the 

finding that stimulation vs. sham enhanced not only the voltage at the target electrode, 

but the strength of the electric field (GFP) and the correlation between the scalp EEG 

and the respective template maps strongly suggest that auditory stimulation briefly 

enhanced the the targeted local UP-state. 

 

 

5.2.3 Local stimulation induces a stereotypical auditory evoked slow oscillatory 

potential 

Visual inspection of the temporal evolution of scalp maps (Figure 8, bottom 

 

Figure 7: EEG response to stimulation vs. sham: a) mean voltage (ERP in µV), b) correlation of EEG maps 

with the template map (Template-corr), c) global field power (field strength in µV), and d) the consistency of 

targeted maps (Topo. consistency) averaged across the first 200 ms post stimulus onset separately for each 

target condition (Fz, C4, CPz) and for stimulation vs. sham. All parameters except one were significantly 

increased after stimulation compared to sham for all target sites (all p < .035, except for the template 

correlation at CPz: p = .223). 
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panel) and of the voltage of single channels for each experimental condition (Figure 8, 

top panel) suggested that highly distinct states were targeted at stimulus onset 

(stimulation and sham condition), but that auditory stimulation vs. sham induced a 

stereotypical auditory evoked slow oscillatory potential. Stimulation in each condition 

was followed by a frontal DOWN-state at about 0.5 s and a frontal UP-state at about 1 

s after stimulus onset.  

To address whether stimulation had a significant impact on the EEG response 

within each of the stimulation conditions (Fz, C4, CPz), TANOVAs contrasting CSD 

estimates for stimulation vs. sham were performed. These analyses confirmed that 

stimulation induced distinct scalp maps starting from 0.28 s up to 1.89 s following 

stimulation onset for each template (Fz: 0.28-1.65 s, C4: 0.32-1.89 s, CPz: 0.37-1.7s, 

all p = .003) compared to sham. 

Importantly, no interactions between targets and stimulation vs. sham were 

observed, i.e. the stimulation induced changes did not significantly differ between 

target sites. This was suggested by the fact that the omnibus TANOVA with the factor 

target (Fz vs. C4 vs. CPz) performed on the difference between stimulation vs. sham 

yielded no significant cluster. This suggests that stimulation induced a similar slow 

oscillatory pattern irrespective of the target site. 

Note that Figure 8 illustrates the results for ERPs computed on EEG data, even 

though statistics were performed on ERPs for CSD estimates. EEG data instead of 

CSD data are plotted because this allows direct comparison between scalp maps of the 

actual data and template maps of the target states. Furthermore, plotting EEG data 

instead of CSD data facilitates comparability between our findings and findings of 

previous studies on local slow oscillations (e.g. Fattinger et al., 2017). The same 

figure with CSD instead of EEG data is provided in the supplements (Supplementary 

Figure 4). The qualitative pattern of results was highly similar between EEG and CSD 

data.  
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5.2.4 Stimulation induces a spindle 

Event-related time-frequency analyses on CSD estimates revealed that click 

noise stimulation induced significant increases in theta activity at about 0.5 s and in 

spindle activity at about 1 s following stimulation onset in all conditions (sig. cluster 

for Fz ranging from -0.04-1.3 s for 2-21 Hz, p = .002; two clusters for CPz ranging 

from -0.04 to 1.92 s, 2-22 Hz, both p < .012; two clusters for CPz ranging from 0.08-

1.52 s, 2-21 Hz, both p < .014; Figure 9). An ANOVA comparing the effect of 

stimulation vs. sham between target conditions yielded no significant cluster. This 

suggests that stimulation induced similar spectral changes across all three target sites. 

 

Figure 8: event-related responses (ERPs) to stimulation vs. sham; Upper panels: ERP over target electrodes 

(left) and over frontal electrodes (right) for all target sites (Fz, C4, Cpz) and conditions (stimulation vs. sham). 

The small inset subplots provide the difference waveforms for stimulation vs. sham for each target site. The 

scalp maps illustrate the electrodes for which ERPs are plotted. The color code represents the target condition 

(red: Fz, green: C4, blue: CPz); Center panel: global field power (gfp) of the grand average of the ERPs for all 

target sites and conditions. Global field power shows a stronger peak for stimulation vs. sham immediately after 

stimulus onset (t = 0.1 s) as well as strong induced responses about 0.5 s, 1 s, and 1.5 s after stimulation vs. 

sham. Lower panel: scalp maps for all target sites and conditions; Scalp maps confirm successful targeting of 

the target states (left column, normalized units) at stimulus onset (t = 0 s; highlighted at t = 0.1 s). Scalp maps 

further suggest that stimulation but not sham was followed by a stereotypical auditory evoked slow oscillatory 

potential with a DOWN-state at t = 0.5 s, and an UP-state at 1 s after stimulus onset. The EEG was averaged 

across +/- 50 ms for each depicted time-point. 
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Figure 9: Comparison of event related spectral power between sham and stimulation condition for all target 

sites. Left: spectral power averaged across all channels (arbitrary unit); Right: topographical distribution of 

theta and spindle power, time window selected for high power. Cluster-based statistical analyses revealed a 

significant enhancement of the spectral power following stimulation compared to sham for each target site from 

around 0-1.5s and from 2-22 Hz (all p < .014), but these enhancements were not significantly different between 

target sites. 
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5.2.5 Stimulation enhances post-stimulus phase-amplitude coupling 

Post-stimulus coupling between the phase of slow oscillations and the 

amplitudes of higher frequencies was enhanced for stimulation vs. sham for all three 

target sites (p < .018; Figure 10). For Fz, coupling was significantly enhanced for two 

clusters encompassing the phase of frequencies between 0.6 and 3.2 Hz and the 

amplitude for frequencies between 4-10 Hz (p = .018) and 12-19 Hz (p = .004). For 

C4, coupling was enhanced between phases for 0.4-3.6 Hz and amplitudes for 4-20 Hz 

(p = .002). For CPz, coupling was enhanced for phases between 0.6-3.8 Hz and 

amplitudes from 4-19 Hz (p = .002). Enhanced phase-amplitude coupling following 

stimulation vs. sham is trivial in that it was probably caused by the overall increase in 

activity in the slow oscillation, theta, and spindle bands that was induced by 

stimulation. Similar increases in phase-amplitude coupling would be expected for any 

kind of auditory stimulation, whether stimulation is phase-targeted or random. 

Importantly, the enhanced phase-amplitude coupling following stimulation was 

not significantly different between target sites. An ANOVA with the factor target site 

(Fz, C4, CPz) performed on the difference between stimulation vs. sham yielded no 

significant clusters. This suggests that stimulation induced similar changes in cross-

spectral interactions across all three target sites. 
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Figure 10: Phase amplitude coupling (PAC) for stimulation and sham for all target conditions. Left: 

Comodulogram averaged across all channels; Right: topographical distribution of PAC selected for 

delta*sigma coupling and for delta*theta coupling. Cluster-analysis revealed a significantly enhanced coupling 

of the phase of slow oscillations and the amplitudes of higher frequencies for stimulation vs. sham (for all three 

target sites, p < .018), but this enhancement was not significantly different between the target sites. 
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6 General discussion 

We present a new closed-loop stimulation algorithm that allows targeting local, 

EEG-defined slow oscillation UP- and DOWN-states of human slow-wave sleep: the 

topographic targeting of slow oscillations algorithm (TOPOSO). The algorithm 

detects transitions into upcoming local UP- and DOWN-states based on the temporal 

evolution of the similarity between topographic maps of the real-time EEG and 

predefined template maps of the target states. In simulations on pre-recorded EEG 

data, the TOPOSO algorithm successfully targeted slow oscillatory UP- and DOWN-

states at 12 distinct target sites with high temporal precision and topographic 

specificity. Importantly, the algorithm targeted UP- and DOWN states with higher 

topographic precision than an approach which only operated on the voltage of a single 

EEG channel. As a consequence, the TOPOSO algorithm targeted fewer, but 

topographically more homogeneous states. A within-subject sham controlled nap-

study with three different target sites (Frontal (Fz), Right Central (C4), Centro-Parietal 

(Cpz)) confirmed that the algorithm allows targeting stimulation at local UP-states 

over different sites on the scalp in real time in vivo. The TOPOSO algorithm thus 

opens up a field of new opportunities by allowing researchers and clinicians to target 

and modulate local slow oscillations in humans using any kind of stimulation. 

The high topographic specificity of the TOPOSO algorithm could help improve 

the efficacy of existing sleep modulation applications. Current applications 

successfully use slow oscillation phase-targeted sensory stimulation to enhance SWS 

and to thereby improve the associated memory (Ngo, Martinetz, et al., 2013; Ong et 

al., 2016, 2018), immune (Besedovsky et al., 2017; Grimaldi et al., 2019), and 

endocrine functions (Grimaldi et al., 2019), to boost consolidation of specific 

memories during sleep (Göldi et al., 2019; Shimizu et al., 2018), and to alter plasticity 

in the motor cortex (Fattinger et al., 2017). All these applications build on 

conventional closed-loop stimulation approaches which only operate on the voltage of 

single EEG channels and therefore target slow oscillations with heterogeneous 

topographies. Importantly, the topography of an electric field on the scalp mirrors the 

predominating neuronal network activity in the brain (Michel & Koenig, 2018; 

Zanesco, 2020), i.e. the current global brain state. Due to its high specificity regarding 
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both, the phase of slow oscillations, and the topography of the targeted electric field, 

the TOPOSO algorithm ensures that stimulation always targets a similar brain state. 

This was also suggested by a recent simulation study (Wunderlin et al., 2022) which 

directly contrasted the performance of a modified version of the TOPOSO algorithm 

with the performance of the single-channel based algorithm that was developed by 

Ngo and colleagues (Ngo, Martinetz, et al., 2013). In this study, TOPOSO targeted 

fontal slow oscillations with higher spatiotemporal precision compared to the 

conventional approach (Wunderlin et al., 2022). This was observed in data obtained 

from elderly participants who generally show reduced slow-wave activity. Using 

TOPOSO instead of or in combination with conventional closed-loop algorithms 

could thus improve the impact of existing sleep modulation applications by a) 

ensuring that stimulation always targets the relevant brain state, and by b) reducing 

unwanted side effects induced by incorrect modulation of non-target states.  

The TOPOSO algorithm could further be used to modulate slow-oscillatory 

activity outside of NREM sleep. Although slow oscillations are a defining feature of 

SWS (Iber et al., 2007), similar oscillations can occur in rapid eye movement (REM) 

sleep (Bernardi et al., 2019; Bernardi & Siclari, 2019) and even during wakefulness 

(Andrillon et al., 2021; Avvenuti et al., 2021; Brokaw et al., 2016; Frohlich et al., 

2021; Sattari et al., 2019). Importantly, slow oscillations in the awake brain are a sign 

of reduced attention (Andrillon et al., 2021) and alertness (Quercia et al., 2018). They 

further serve as biomarker of neuropathology after brain injury (Cassidy et al., 2020; 

Sarasso et al., 2020) or in epilepsy (Lundstrom et al., 2019), and they are associated 

with various neurological and psychiatric conditions (Frohlich et al., 2021). Slow-

oscillatory activity in the awake brain is thus a promising target for modulation in 

health and disease. Unfortunately, slow oscillations have much lower amplitudes in 

REM sleep and during wakefulness than in SWS (e.g. Andrillon et al., 2021). 

Conventional approaches for phase targeted closed-loop stimulation may fail during 

REM sleep and wakefulness because they detect slow oscillations based on their high 

amplitudes. The TOPOSO algorithm does not depend on specific amplitude thresholds 

for detecting slow oscillations and further ensures that targeted UP- and DOWN-states 

are topographically homogeneous. Consequently, Wunderlin et al. observed that a 
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modified version of TOPOSO was more successful than a conventional approach at 

targeting the low-amplitude slow oscillations in sleep recordings obtained from 

elderly participants (Wunderlin et al., 2022). TOPOSO thus seems more suitable than 

conventional methods for modulating low-amplitude slow oscillations in the awake 

brain and in REM sleep. 

Furthermore, the TOPOSO algorithm opens new ways of customizing sleep 

modulation to specific sub-groups of the population or to single individuals who show 

slow oscillations with unique topographic characteristics. In fact, the TOPOSO 

algorithm is able to target slow oscillations with unique topographic characteristics 

because it uses predefined templates of the topographies of the targeted local UP- and 

DOWN-states. These templates can be generated from available sleep recordings that 

are representative of the target population, or even from recordings of single 

individuals. Customizing stimulation to specific subpopulations or individuals is 

important because the topography of slow oscillatory activity varies substantially and 

systematically between groups and individuals. For example, different individuals 

show distinct, stable, trait-like topographic distributions of slow oscillatory activity 

(Markovic et al., 2018). Furthermore, the topography of slow oscillations changes 

systematically throughout adolescence (Kurth et al., 2010, 2012; Ringli & Huber, 

2011) and again with aging (Landolt & Borbély, 2001; Sprecher et al., 2016). Also, 

some clinical populations such as patients suffering from depression (Tesler et al., 

2016) show altered slow oscillation topographies. Addressing these individual 

differences will help to increase the precision of slow oscillation targeting and could 

boost the impact of sleep modulation (Henin et al., 2019; Papalambros et al., 2019; 

Schneider et al., 2020; Wunderlin et al., 2021).  

Successful modulation of local slow oscillations will ultimately depend not 

only on precise targeting of relevant local UP- and DOWN-states, but also on the type 

of stimulation that is applied. Here, we explored how auditory stimulation alters local 

slow oscillations during sleep. In a sham-controlled nap study, auditory click noises 

were targeted at UP-states detected over the frontal, right sensorimotor, and centro-

parietal cortex. Stimulation briefly enhanced the specific local UP-state. In fact, the 
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amplitude at the target site, the strength of the electrical field on the scalp, and the 

topographic similarity between EEG scalp maps and the template maps of the 

respective target states were all increased during the first 200 ms following 

stimulation vs. sham. Whether this brief enhancement of the targeted UP-states is 

sufficient for altering or improving their functions remains to be tested. Importantly, 

stimulation then elicited a frontal slow oscillation. For all target sites, the targeted 

local UP-states were followed by a frontal DOWN-state at around 500 ms and a 

frontal upstate at about 900 ms after stimulus onset. This frontal slow oscillation was 

accompanied by a temporary increase in fronto-central theta power during the 

DOWN-state, and by elevated fronto-central spindle-activity during the UP-state. 

Earlier studies investigating auditory processing during sleep suggest that such frontal 

slow oscillations are the stereotypical brain response to auditory stimulation during 

sleep (Andrillon et al., 2016; Andrillon & Kouider, 2020; Colrain & Campbell, 2007; 

Riedner et al., 2011; Ruch et al., 2014). This is also suggested by the finding that 

specific targeting of local slow oscillations did not lead to a change in any of the 

parameters that were assessed to study the neuronal response to auditory stimulation. 

None of the stimulus-induced changes in electrical potentials, spectral power, or 

phase-amplitude coupling differed significantly between target sites. We therefore 

conclude that entrainment of non-frontal, local slow oscillations might not be possible 

with auditory stimulation. Whether the induced frontal slow-oscillation represents a 

general sleep-preserving function of the brain that is triggered by any kind of sensory 

stimulation (Andrillon et al., 2016; Halász, 2016; Laurino et al., 2019), or whether the 

initiation of frontal slow oscillations is specifically favored by the auditory pathway 

(Bellesi et al., 2014) is beyond the scope of this paper. Of note, our observation that 

only the initial early response to stimulation (during the targeted UP-state) but not the 

late response (induced slow oscillation) was specific to the targeted site is consistent 

with the findings by Laurino et al. (2019). These authors assessed how the sleeping 

brain responds to stimulation in different sensory modalities (auditory, visual, tactile). 

They observed that the early response to stimulation is specific to the sensory 

modality, but that all types of stimuli then induce a modality-independent frontal slow 

oscillation. 
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Here, we speculate that optimal modulation of local slow oscillations is 

achieved through the use of stimulation techniques that directly alter neuronal activity 

within the specific cortical site of interest. Such techniques could include multisensory 

(e.g. audiovisual) stimulation, sensory stimulation in the specific modality of the 

targeted sensori-motor cortical network (Bar et al., 2020; Laurino et al., 2019), 

transcutaneous electrical nerve stimulation (Ravan & Begnaud, 2019; Veldman et al., 

2021), or transcranial electrical (Ketz et al., 2018), electromagnetic (Murphy et al., 

2009), or even ultrasound stimulation (Fomenko et al., 2018). Importantly, the 

TOPOSO algorithm allows steering any kind of stimulation for targeting local slow 

oscillations. 

With the appropriate type of stimulation, the TOPOSO algorithm can be used 

to either enhance and entrain specific local slow oscillations, or to suppress them. 

Both enhancement and suppression might find use in different practical applications. 

Enhancing local slow oscillations should increase their specific function. This could, 

for example, help with recovery after brain injury. Animal research indeed suggests 

that artificial enhancement of local slow oscillations in the peri-infarct zone after 

stroke boosts recovery (Facchin et al., 2020). Admittedly, boosting of local slow 

oscillations might be more difficult to achieve than suppression. This is suggested by 

the finding that auditory stimulation entrained stereotypical frontal instead of local, 

non-frontal slow oscillations in this study. Selective suppression of specific local slow 

oscillations could allow studying their function in general (Crupi et al., 2009; 

Fattinger et al., 2017). Perturbing specific local UP- and DOWN-states could further 

find use in clinical applications where pathological subtypes of slow oscillations must 

be suppressed. In depression, for example, frontal slow oscillatory activity tends to be 

enhanced during sleep (Tesler et al., 2016). Suppressing these frontal slow oscillations 

was found to have an antidepressant effect (Landsness et al., 2011). The TOPOSO 

algorithm could provide a means to selectively suppress frontal slow oscillations 

while leaving other slow oscillatory activity intact. This could provide the desired 

antidepressant effect while producing fewer unwanted side effects than standard sleep 

deprivation regimes that suppress all slow oscillatory activity (Giedke & Schwärzler, 

2002). The TOPOSO algorithm could further be used for suppressing pathological 
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slow oscillations in wakefulness after brain injury (Cassidy et al., 2020; Sarasso et al., 

2020) or in epilepsy (Lundstrom et al., 2019). 

The TOPOSO algorithm and the presented findings are not without limitations. 

Most importantly, TOPOSO identifies and targets local slow oscillations merely by 

the voltage distribution of the electric field on the scalp, not by the true underlying 

neuronal activity recorded from within the brain. Whether the local UP- and DOWN-

states targeted by TOPOSO truly reflect periods of high vs. low neuronal activity 

(―ON‖ vs. ―OFF‖-periods) of slow oscillations within the cortical sites of interest thus 

remains to be confirmed. Determining the exact cortical origin and cortical extent of 

slow oscillations would require recording of multi-unit activity by means of brain-

implanted microelectrodes (Nir et al., 2011). Fortunately, much evidence suggests that 

temporally quasi-stable voltage maps such as the ones targeted by TOPOSO are very 

likely to represent specific brain states in well-described cortical sites or networks (for 

a review, see Michel & Koenig, 2018). Furthermore, source dipole analyses that we 

performed for the template maps used in TOPOSO suggested that the targeted UP-

/DOWN-states were generated in the cortex underneath the target electrode. Hence, 

there is indirect evidence to suggest that TOPOSO targets well-localized slow 

oscillations. Nevertheless, the local specificity of TOPOSO might be limited by the 

fact that the algorithm does not explicitly distinguish between spatially restricted 

(―local‖) type-II slow oscillations, and widespread ―global‖ type-I oscillation. Type-II 

oscillations only occur at one or a few sites on the scalp, while ―global‖ type-I slow 

oscillations are present in most sensors. TOPOSO may target both types of slow 

oscillations, as long as their peak activity is at the site of interest. Although spatially 

restricted vs. widespread slow oscillations are thought to mirror distinct generating 

mechanisms and different homeostatic regulation processes (Bernardi et al., 2018; 

Siclari et al., 2014), they may be functionally equivalent with respect to their impact 

on local computations and synaptic processes within the site of interest. Hence, 

targeting both types of oscillations for studying and modulating their local impact in 

the brain seems reasonable. A rather technical limitation of our current work is that 

TOPOSO was validated on only one EEG system. In fact, the EEG data provided for 

the training of our algorithm, the data used for the simulation study, and the data 

                  



 MODULATION OF LOCAL SLOW OSCILLATIONS 

52/69 

acquired in the closed-loop stimulation study were all recorded with the same 

equipment and in the same electromagnetically shielded room. It is thus unclear how 

TOPOSO would perform on different EEG equipment and in different environments. 

Recordings with different systems or in unshielded rooms might call for heavy 

filtering and preprocessing of real-time data. This might affect the overall 

performance of the algorithm or require adjustment of the settings and parameters. 

The generalizability of the findings of our in-vivo validation study is limited by the 

small sample size of the study and by the fact that stimulation was administered 

during a relatively short afternoon nap. More stimulations across an entire night in a 

larger sample of participants might provide the statistical power that is necessary for 

finding subtle differences in the slow oscillatory activity that is induced by 

stimulations targeted at distinct local UP-states. Finally, the generalizability of our 

findings is limited by the fact that the simulations as well as the in-vivo stimulation 

were performed on afternoon naps in partially sleep-deprived participants. It is thus 

unclear how well the algorithm would perform on natural night sleep. Importantly, 

though, the algorithm is currently successfully used for targeting frontal UP- and 

DOWN-states during night sleep in several ongoing studies. Also, an adapted version 

of the algorithm was successfully validated in a simulation study performed on night 

sleep data obtained in elderly subjects (Wunderlin et al., 2022). 

 

Several potential improvements of the TOPOSO algorithm that significantly 

increase its usability deserve mentioning. First of all, the algorithm could be 

implemented in a high-performance software platform or in a microcontroller in order 

to speed up computation time. This would increase the temporal accuracy and thus the 

efficacy of stimulation and could even allow for real-time detection and targeting of 

local UP- and DOWN-states instead of targeting up-coming UP- or DOWN-states 

based on the detection of state transitions. This could – for example – be achieved by 

means of a phase-locked loop (PLL) (e.g., Santostasi et al., 2016) that operates on the 

time-resolved similarity (correlation) between EEG scalp maps and target template 

maps. TOPOSO could further be extended with the capability to generate target 
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templates based on forward-projections of local slow-oscillations in the targeted 

cortical source. These forward projections could be performed in a standard volume 

conduction model or even in individualized models (Akalin Acar & Makeig, 2013). 

This would allow TOPOSO to target any local slow oscillations using any kind of 

high-density EEG montage without having to first pre-compute the respective 

template maps based on existing sleep recordings that were obtained with the same 

setup. 

In sum, we argued that studies and applications aiming at modulating local 

slow oscillations during human sleep so far used closed-loop stimulation algorithms 

that failed to consistently target local slow oscillatory activity. We therefore 

introduced and validated a new EEG-based closed-loop algorithm that allows precise 

topographic targeting of local slow oscillations (TOPOSO) on different sites on the 

scalp. As the TOPOSO algorithm allows to target local slow oscillations based on 

predefined templates, it will enable individualized targeting of slow oscillations in sub 

populations with altered slow oscillatory activity. We used this algorithm in a closed-

loop stimulation study and found that auditory stimulation targeted at local UP-states 

may briefly enhance the targeted state, but then induces frontal rather than local slow 

oscillations. Therefore, we suggest that future applications aiming at local slow 

oscillatory enhancements use stimulation modalities (tactile, olfactory, visual, 

gustatory stimulation; electric or magnetic non-invasive brain stimulation) that 

address the functional specialization of the cortical site of interest and thereby induce 

and entrain local slow oscillations.  
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