13 research outputs found

    Response of sloping unconfined aquifer to stage changes in adjacent stream: II. Applications

    No full text
    We convolve the system response functions of the linearised 1D equation of Boussinesq (extended for slope, Dupuit approximation) derived in the companion paper of Akylas and Koussis [Akylas, E., Koussis, A.D., (submitted for publication). Response of sloping unconfined aquifer to stage changes in adjacent stream: I. Theoretical analysis and derivation of system response functions, J. Hydrol] and develop solutions for the interaction of a fully penetrating stream with a sloping unconfined aquifer, taking also into account a low-conductivity streambed layer. These solutions give the aquifer stage and flow rate, the flow exchange rate at the stream–aquifer interface and the exchanged water volumes (bank storage/release). The solutions are analytical, when the flow-inducing stream stage variations are common functions; otherwise, the convolution integral is evaluated numerically. Responses are compared for aquifers on positive, negative and zero base slopes to a wave-like change in the stage of the stream. Analytical and numerical convolution-derived solutions are used to model the interaction of Cedar River and its adjacent unconfined aquifer near Cedar Rapids, Iowa. In the model, the aquifer base is taken to be horizontal or inclined and the streambed clogged by a low-conductivity sediment layer; the model is verified against data not used in the calibration and is found to perform very well

    On the Accuracy of Particle Image Velocimetry with Citizen Videos—Five Typical Case Studies

    No full text
    The application of image velocimetry to measure surface streamflow velocities requires meticulous preparation, including surveying and securing both the existence of floating features on the water surface, and, as in every hydrometry method, appropriate hydraulic conditions (e.g., uniform flow, turbulent velocity profile, etc.). Though these requirements can be easily satisfied when all stages involved in image velocimetry are prepared and executed by specialists, this is not guaranteed when the video footage is recorded by citizens. This kind of spontaneously obtained data are frequently the only available information of extreme flood events; therefore, and despite their non-scientific origin and standardization, these data are very important for hydrology. In this study, we evaluate image velocimetry under a variety of conditions, including conditions resembling citizen videos. Furthermore, we conclude on the manual analysis as a means of verification of the accuracy of the velocity estimations. An interesting finding from the case study with non-uniform flow conditions was that the surface velocities occurring at the middle section of the river, estimated using large-scale particle image velocimetry algorithms, exhibited a significant error, whereas the manual estimation was more accurate. This finding calls for further investigation and a more careful approach in similar conditions

    Tipping points for seawater intrusion in coastal aquifers under rising sea level

    No full text
    This study considers different projections of climate-driven sea-level rise and uses a recently developed, generalized analytical model to investigate the responses of sea intrusion in unconfined sloping coastal aquifers to climate-driven sea-level rise. The results show high nonlinearity in these responses, implying important thresholds, or tipping points, beyond which the responses of seawater intrusion to sea-level rise shift abruptly from a stable state of mild change responses to a new stable state of large responses to small changes that can rapidly lead to full seawater intrusion into a coastal aquifer. The identified tipping points are of three types: (a) spatial, for the particular aquifers (sections) along a coastline with depths that imply critical risk of full sea intrusion in response to even small sea-level rise; (b) temporal, for the critical sea-level rise and its timing, beyond which the change responses and the risk of complete sea intrusion in an aquifer shift abruptly from low to very high; and (c) managerial, for the critical minimum values of groundwater discharge and hydraulic head that inland water management must maintain in an aquifer in order to avoid rapid loss of control and complete sea intrusion in response to even small sea-level rise. The existence of a tipping point depends on highly variable aquifer properties and groundwater conditions, in combination with more homogeneous sea conditions. The generalized analytical model used in this study facilitates parsimonious quantification and screening of sea-intrusion risks and tipping points under such spatio-temporally different condition combinations along extended coastlines

    Probabilistic Evaluation and Filtering of Image Velocimetry Measurements

    No full text
    The recent technological advances in remote sensing (e.g., unmanned aerial vehicles, digital image acquisition, etc.) have vastly improved the applicability of image velocimetry in hydrological studies. Thus, image velocimetry has become an established technique with an acceptable error for practical applications (the error can be lower than 10%). The main source of errors has been attributed to incomplete intrinsic and extrinsic camera calibration, to non-constant frame rate and to spurious low velocities due to moving objects that are irrelevant to the streamflow. Some researchers have even employed probabilistic approaches (Monte Carlo simulations) to analyze the uncertainty introduced during the camera calibration procedure. On the other hand, the endogenous uncertainty of the image velocimetry algorithms per se has received little attention. In this study, a probabilistic approach is employed to systematically analyze this uncertainty. It is argued that this analysis may not only improve the performance of the image velocimetry methods but it can also provide information regarding the impact of the video recording conditions (e.g., low density of features, oblique camera angle, low resolution, etc.) on the accuracy of the estimated values. The suggested method has been tested in six case studies of which the data have been previously made publicly available by independent researchers

    On the Uncertainty of the Image Velocimetry Method Parameters

    No full text
    Image velocimetry is a popular remote sensing method mainly because of the very modest cost of the necessary equipment. However, image velocimetry methods employ parameters that require high expertise to select appropriate values in order to obtain accurate surface flow velocity estimations. This introduces considerations regarding the subjectivity introduced in the definition of the parameter values and its impact on the estimated surface velocity. Alternatively, a statistical approach can be employed instead of directly selecting a value for each image velocimetry parameter. First, probability distribution should be defined for each model parameter, and then Monte Carlo simulations should be employed. In this paper, we demonstrate how this statistical approach can be used to simultaneously produce the confidence intervals of the estimated surface velocity, reduce the uncertainty of some parameters (more specifically, the size of the interrogation area), and reduce the subjectivity. Since image velocimetry algorithms are CPU-intensive, an alternative random number generator that allows obtaining the confidence intervals with a limited number of iterations is suggested. The case study indicated that if the statistical approach is applied diligently, one can achieve the previously mentioned threefold objective

    Establishing and Operating (Pilot Phase) a Telemetric Streamflow Monitoring Network in Greece

    No full text
    This paper describes HYDRONET, a telemetry-based prototype of a streamflow monitoring network in the Greek territory, where such data are sparse. HYDRONET provides free and near-real-time online access to data. Instead of commercially available stations, in-house-designed and -built telemetric stations were installed, which reduced the equipment cost by approximately 50%. The labour of hydrometric campaigns was reduced by applying a new maximum-entropy method to estimate the discharge from surface velocity observations. Here, we describe these novelty elements succinctly. The potential of HYDRONET to provide civil protection services is exemplified by a flood warning demonstrator for Kalamata’s City Centre. The network’s operation, including the hydraulic criteria for monitoring site selection, the characteristics of the telemetric equipment, the operational monitoring and hydrometric procedures, and the specifics of data transmission, quality control, and storage are described in detail, along with experiences with problems encountered during this pilot phase
    corecore