14 research outputs found

    Characterization of 46 patient-specific BCR-ABL1 fusions and detection of SNPs upstream and downstream the breakpoints in chronic myeloid leukemia using next generation sequencing

    Get PDF
    In chronic myeloid leukemia, the identification of individual BCR-ABL1 fusions is required for the development of personalized medicine approach for minimal residual disease monitoring at the DNA level. Next generation sequencing (NGS) of amplicons larger than 1000 bp simplified and accelerated a process of characterization of patient-specific BCR-ABL1 genomic fusions. NGS of large regions upstream and downstream the individual breakpoints in BCR and ABL1 genes, respectively, also provided information about the sequence variants such are single nucleotide polymorphisms

    Interleukin-17A

    Get PDF
    Interleukin-17 contributes to the pathogenesis of type 1 diabetes mellitus (T1DM) and chronic periodontitis (CP). We analyzed IL-17A −197A/G and IL-17F +7488C/T polymorphisms in T1DM and CP and determined their associations with IL-17 production and occurrence of periopathogens. Totally 154 controls, 125 T1DM, and 244 CP patients were genotyped using 5′ nuclease TaqMan® assays. Bacterial colonization was investigated by a DNA-microarray kit. Production of IL-17 after in vitro stimulation of mononuclear cells by mitogens and bacteria was examined by the Luminex system. Although no differences in the allele/genotype frequencies between patients with CP and T1DM + CP were found, the IL-17A −197 A allele increased the risk of T1DM (P<0.05). Levels of HbA1c were significantly elevated in carriers of the A allele in T1DM patients (P<0.05). Production of IL-17 by mononuclear cells of CP patients (unstimulated/stimulated by Porphyromonas gingivalis) was associated with IL-17A A allele (P<0.05). IL-17A polymorphism increased the number of Tannerella forsythia and Treponema denticola in patients with CP and T1DM + CP, respectively (P<0.05). IL-17A gene variability may influence control of T1DM and the “red complex” bacteria occurrence in patients with CP and T1DM + CP. Our findings demonstrated the functional relevance of the IL-17A polymorphism with higher IL-17 secretion in individuals with A allele

    In chronic myeloid leukemia patients on second-line tyrosine kinase inhibitor therapy, deep sequencing of BCR-ABL1 at the time of warning may allow sensitive detection of emerging drug-resistant mutants

    Get PDF
    BACKGROUND: Imatinib-resistant chronic myeloid leukemia (CML) patients receiving second-line tyrosine kinase inhibitor (TKI) therapy with dasatinib or nilotinib have a higher risk of disease relapse and progression and not infrequently BCR-ABL1 kinase domain (KD) mutations are implicated in therapeutic failure. In this setting, earlier detection of emerging BCR-ABL1 KD mutations would offer greater chances of efficacy for subsequent salvage therapy and limit the biological consequences of full BCR-ABL1 kinase reactivation. Taking advantage of an already set up and validated next-generation deep amplicon sequencing (DS) assay, we aimed to assess whether DS may allow a larger window of detection of emerging BCR-ABL1 KD mutants predicting for an impending relapse. METHODS: a total of 125 longitudinal samples from 51 CML patients who had acquired dasatinib- or nilotinib-resistant mutations during second-line therapy were analyzed by DS from the time of failure and mutation detection by conventional sequencing backwards. BCR-ABL1/ABL1%(IS) transcript levels were used to define whether the patient had 'optimal response', 'warning' or 'failure' at the time of first mutation detection by DS. RESULTS: DS was able to backtrack dasatinib- or nilotinib-resistant mutations to the previous sample(s) in 23/51 (45 %) pts. Median mutation burden at the time of first detection by DS was 5.5 % (range, 1.5-17.5 %); median interval between detection by DS and detection by conventional sequencing was 3 months (range, 1-9 months). In 5 cases, the mutations were detectable at baseline. In the remaining cases, response level at the time mutations were first detected by DS could be defined as 'Warning' (according to the 2013 ELN definitions of response to 2nd-line therapy) in 13 cases, as 'Optimal response' in one case, as 'Failure' in 4 cases. No dasatinib- or nilotinib-resistant mutations were detected by DS in 15 randomly selected patients with 'warning' at various timepoints, that later turned into optimal responders with no treatment changes. CONCLUSIONS: DS enables a larger window of detection of emerging BCR-ABL1 KD mutations predicting for an impending relapse. A 'Warning' response may represent a rational trigger, besides 'Failure', for DS-based mutation screening in CML patients undergoing second-line TKI therapy

    Interleukin-1 Gene Variability and Plasma Levels in Czech Patients with Chronic Periodontitis and Diabetes Mellitus

    No full text
    Recent studies have suggested a bidirectional relationship between chronic periodontitis (CP) and diabetes mellitus (DM). Immunoregulatory factors such as cytokines play an important role in etiopathogenesis of both diseases. The aim of this study was to analyze variability in interleukin-1 (IL-1) gene cluster and IL-1β plasma levels in patients with CP, DM, and a combination of both diseases. A total of 1016 individuals participating in this case-control study—225 healthy controls, 264 patients with CP, 132 with type 1 diabetes (T1DM), and 395 patients with type 2 diabetes (T2DM)—were genotyped using methods based on polymerase chain reaction for IL-1 gene polymorphisms (IL-1A (−889C/T, rs1800587), IL-1B (+3953C/T, rs1143634), and IL-1RN (gene for IL-1 receptor antagonist, IL-1RA, 86 bp tandem repeats in intron 2)). Levels of IL-1β were measured by Luminex methods in subgroups of controls, CP, T1DM + CP, and T2DM + CP subjects. Although no significant associations were found in the genotype and allele frequencies of IL-1A (−889C/T), significant differences in the allele frequencies of IL-1B (+3953C/T) were observed between controls and CP patients (P<0.05). In T1DM patients, IL-1RN∗S “short” allele and IL-1RN 12 genotype were significantly less frequent than those in controls (P<0.01). In haplotype analysis, TTL haplotype decreased the risk of CP development (P<0.01), whereas CCS and CTL haplotypes (P<0.01 and P<0.05) were associated with T1DM. Although IL-1β levels were measured significantly higher in mononuclear cells after stimulation by mitogens, HSP70, or selected periodontal bacteria than in unstimulated cells, IL-1 genotypes did not correlate with circulating IL-1β levels. In the Czech population, significant associations between the IL-1B polymorphism with CP and the IL-1RN variant with T1DM were found. Haplotype analysis suggests that variability in IL-1 gene cluster may be one of the factors in the CP and T1DM pathogenesis, although single variants of these polymorphisms are not substantial for protein production

    Interleukin-17A Gene Variability in Patients with Type 1 Diabetes Mellitus and Chronic Periodontitis: Its Correlation with IL-17 Levels and the Occurrence of Periodontopathic Bacteria

    No full text
    Interleukin-17 contributes to the pathogenesis of type 1 diabetes mellitus (T1DM) and chronic periodontitis (CP). We analyzed IL-17A −197A/G and IL-17F +7488C/T polymorphisms in T1DM and CP and determined their associations with IL-17 production and occurrence of periopathogens. Totally 154 controls, 125 T1DM, and 244 CP patients were genotyped using 5′ nuclease TaqMan® assays. Bacterial colonization was investigated by a DNA-microarray kit. Production of IL-17 after in vitro stimulation of mononuclear cells by mitogens and bacteria was examined by the Luminex system. Although no differences in the allele/genotype frequencies between patients with CP and T1DM + CP were found, the IL-17A −197 A allele increased the risk of T1DM (P<0.05). Levels of HbA1c were significantly elevated in carriers of the A allele in T1DM patients (P<0.05). Production of IL-17 by mononuclear cells of CP patients (unstimulated/stimulated by Porphyromonas gingivalis) was associated with IL-17A A allele (P<0.05). IL-17A polymorphism increased the number of Tannerella forsythia and Treponema denticola in patients with CP and T1DM + CP, respectively (P<0.05). IL-17A gene variability may influence control of T1DM and the “red complex” bacteria occurrence in patients with CP and T1DM + CP. Our findings demonstrated the functional relevance of the IL-17A polymorphism with higher IL-17 secretion in individuals with A allele

    Next-generation deep sequencing improves detection of BCR-ABL1 kinase domain mutations emerging under tyrosine kinase inhibitor treatment of chronic myeloid leukemia patients in chronic phase

    No full text
    PURPOSE: Here, we studied whether amplicon next-generation deep sequencing (NGS) could improve the detection of emerging BCR-ABL1 kinase domain mutations in chronic phase chronic myeloid leukemia (CML) patients under tyrosine kinase inhibitor (TKI) treatment and discussed the clinical relevance of such sensitive mutational detection. METHODS: For NGS data evaluation including extraction of biologically relevant low-level variants from background error noise, we established and applied a robust and versatile bioinformatics approach. RESULTS: Results from a retrospective longitudinal analysis of 135 samples of 15 CML patients showed that NGS could have revealed emerging resistant mutants 2-11 months earlier than conventional sequencing. Interestingly, in cases who later failed first-line imatinib treatment, NGS revealed that TKI-resistant mutations were already detectable at the time of major or deeper molecular response. Identification of emerging mutations by NGS was mirrored by BCR-ABL1 transcript level expressed either fluctuations around 0.1 %(IS) or by slight transcript level increase. NGS also allowed tracing mutations that emerged during second-line TKI therapy back to the time of switchover. Compound mutants could be detected in three cases, but were not found to outcompete single mutants. CONCLUSIONS: This work points out, that next-generation deep sequencing, coupled with a robust bioinformatics approach for mutation calling, may be just in place to ensure reliable detection of emerging BCR-ABL1 mutations, allowing early therapy switch and selection of the most appropriate therapy. Further, prospective assessment of how to best integrate NGS in the molecular monitoring and clinical decision algorithms is warranted
    corecore