29 research outputs found

    Activation of human natural killer cells by Plasmodium falciparum

    Get PDF
    The purpose of work described in this thesis was to (i) determine the contribution of innate immune responses to the early pro-inflammatory cytokine response to Plasmodium falciparum, (ii) describe the kinetics and cellular sources ofIFN-y production by human PBMC in response to activation by intact, infected erythrocytes (iRBC) or freeze-thawed schizont lysate (PfSL) and (iii) determine the activation requirements for innate immune cells responding to P. falciparum. Infected erythrocytes induce a more rapid and intense IFN-y response from malaria naive PBMC than does PfSL, correlating with rapid iRBC activation of CD3-CD56+ natural killer (NK) cells to produce IFN-y. There is marked heterogeneity between donors in the magnitude of the NK-IFN-y response not correlating with mitogen or cytokine-induced NK activation or prior malaria exposure. The NK-IFN-y response is highly IL-I2 dependent, partly IL-I8 dependent and highly dependent on direct contact between the NK cell and the parasitized erythrocyte. Exogenous rIL-I2 or rIL-I8 did not augment NK-IFN-y responses indicating that IL-I2 and IL-18 production is not the limiting factor explaining differences in NK cell reactivity between live and dead parasites or between donors. The possibility that donor heterogeneity is due to genetic variation in killer immunoglobulin- like receptors (KIR) and/or differential expression of C-type lectin receptors was also investigated. A significant up-regulation ofCD94 and NKG2A was observed in IFN-y+ NK cells of responding donors, suggesting that the inhibitory CD94:NKG2A heterodimer may serve a regulatory function on P. falciparum activated NK cells. Collectively, these data indicate that NK cells may represent an important early source oflFN-y, a cytokine implicated in induction of various anti-parasitic effector mechanisms. The heterogeneity of this early IFN-y response between donors suggests variation in their ability to mount a rapid pro-inflammatory cytokine response to malaria that may, in turn, influence their innate susceptibility to malaria infection, malaria-related morbidity or death from malari

    Nedd8 hydrolysis by UCH proteases in Plasmodium parasites

    Get PDF
    Plasmodium parasites are the causative agents of malaria, a disease with wide public health repercussions. Increasing drug resistance and the absence of a vaccine make finding new chemotherapeutic strategies imperative. Components of the ubiquitin and ubiquitin-like pathways have garnered increased attention as novel targets given their necessity to parasite survival. Understanding how these pathways are regulated in Plasmodium and identifying differences to the host is paramount to selectively interfering with parasites. Here, we focus on Nedd8 modification in Plasmodium falciparum, given its central role to cell division and DNA repair, processes critical to Plasmodium parasites given their unusual cell cycle and requirement for refined repair mechanisms. By applying a functional chemical approach, we show that deNeddylation is controlled by a different set of enzymes in the parasite versus the human host. We elucidate the molecular determinants of the unusual dual ubiquitin/Nedd8 recognition by the essential PfUCH37 enzyme and, through parasite transgenics and drug assays, determine that only its ubiquitin activity is critical to parasite survival. Our experiments reveal interesting evolutionary differences in how neddylation is controlled in higher versus lower eukaryotes, and highlight the Nedd8 pathway as worthy of further exploration for therapeutic targeting in antimalarial drug design.Includes Wellcome and BBSRC

    Characterisation of the Trichinella spiralis deubiquitinating enzyme, TsUCH37, an evolutionarily conserved proteasome interaction partner.

    Get PDF
    Trichinella spiralis is a parasitic nematode that infects mammals indiscriminately. Although the biggest impact of trichinellosis is observed in developing countries, the parasite is found on all continents except Antarctica. In humans, Trichinella infection contributes globally to helminth related morbidity and disability adjusted life years. In animals, infection is implicated as a serious agricultural problem and drug treatment is largely ineffective. During chronic infection, larvae invade skeletal muscle cells, forming a nurse cell complex in which they become encysted. The nurse cell is a product of the severe disruption of the host cell homeostasis. Proteins of the Ub/proteasome pathway are highly conserved throughout evolution, and considering their importance in the regulation of cell homeostasis, provide interesting and novel therapeutic targets for various diseases. In order to target this system in parasites, pathogen proteins that play a role in this pathway must be identified. We report the identification of the first T. spiralis deubiquitinating enzyme, and show evidence that the function of this protein as a proteasome interaction partner has been evolutionarily conserved. We show that members of this enzyme family are important for T. spiralis survival and that the use of inhibitor compounds may help elucidate their role in infection

    Innate immune response to malaria: rapid induction of IFN-gamma from human NK cells by live Plasmodium falciparum-infected erythrocytes.

    No full text
    To determine the potential contribution of innate immune responses to the early proinflammatory cytokine response to Plasmodium falciparum malaria, we have examined the kinetics and cellular sources of IFN-gamma production in response to human PBMC activation by intact, infected RBC (iRBC) or freeze-thaw lysates of P. falciparum schizonts. Infected erythrocytes induce a more rapid and intense IFN-gamma response from malaria-naive PBMC than do P. falciparum schizont lysates correlating with rapid iRBC activation of the CD3(-)CD56(+) NK cell population to produce IFN-gamma. IFN-gamma(+) NK cells are detectable within 6 h of coculture with iRBC, their numbers peaking at 24 h in most donors. There is marked heterogeneity between donors in magnitude of the NK-IFN-gamma response that does not correlate with mitogen- or cytokine-induced NK activation or prior malaria exposure. The NK cell-mediated IFN-gamma response is highly IL-12 dependent and appears to be partially IL-18 dependent. Exogenous rIL-12 or rIL-18 did not augment NK cell IFN-gamma responses, indicating that production of IL-12 and IL-18 is not the limiting factor explaining differences in NK cell reactivity between donors or between live and dead parasites. These data indicate that NK cells may represent an important early source of IFN-gamma, a cytokine that has been implicated in induction of various antiparasitic effector mechanisms. The heterogeneity of this early IFN-gamma response between donors suggests a variation in their ability to mount a rapid proinflammatory cytokine response to malaria infection that may, in turn, influence their innate susceptibility to malaria infection, malaria-related morbidity, or death from malaria

    Artemisinin susceptibility in the malaria parasite Plasmodium falciparum: propellers, adaptor proteins and the need for cellular healing.

    Get PDF
    Studies of the susceptibility of Plasmodium falciparum to the artemisinin family of antimalarial drugs provide a complex picture of partial resistance (tolerance) associated with increased parasite survival in vitro and in vivo. We present an overview of the genetic loci that, in mutant form, can independently elicit parasite tolerance. These encode Kelch propeller domain protein PfK13, ubiquitin hydrolase UBP-1, actin filament-organising protein Coronin, also carrying a propeller domain, and the trafficking adaptor subunit AP-2ΞΌ. Detailed studies of these proteins and the functional basis of artemisinin tolerance in blood-stage parasites are enabling a new synthesis of our understanding to date. To guide further experimental work, we present two major conclusions. First, we propose a dual-component model of artemisinin tolerance in P. falciparum comprising suppression of artemisinin activation in early ring stage by reducing endocytic haemoglobin capture from host cytosol, coupled with enhancement of cellular healing mechanisms in surviving cells. Second, these two independent requirements limit the likelihood of development of complete artemisinin resistance by P. falciparum, favouring deployment of existing drugs in new schedules designed to exploit these biological limits, thus extending the useful life of current combination therapies

    Uninfected erythrocytes inhibit Plasmodium falciparum-induced cellular immune responses in whole-blood assays.

    No full text
    Whole-blood assays (WBAs) have been successfully used as a simple tool for immuno-epidemiological field studies evaluating cellular immune responses to mycobacterial and viral antigens. Rather unexpectedly, we found very poor cytokine responses to malaria antigens in WBAs in 2 immuno-epidemiological studies carried out in malaria endemic populations in Africa. We have therefore conducted a detailed comparison of cellular immune responses to live (intact) and lysed malaria-infected erythrocytes in WBAs and in peripheral blood mononuclear cell (PBMC) cultures. We observed profound inhibition of both proliferative and interferon-gamma responses to malarial antigens in WBAs as compared with PBMC cultures. This inhibition was seen only for malaria antigens and could not be overcome by increasing either antigen concentration or responder cell numbers. Inhibition was mediated by intact erythrocytes and occurred early in the culture period, suggesting that failure of antigen uptake might underlie the lack of T-cell responses. In support of this hypothesis, we have shown that intact uninfected erythrocytes specifically inhibit phagocytosis of infected red blood cells by peripheral blood monocytes. We propose that specific biochemical interactions with uninfected erythrocytes inhibit the phagocytosis of malaria-infected erythrocytes and that this may impede T-cell recognition in vivo
    corecore