38 research outputs found

    Hensen's node, but not other biological signallers, can induce supernumerary digits in the developing chick limb bud

    Full text link
    The purpose of this study was to determine whether the organizer regions of early avian and amphibian embryos could induce supernumerary (SN) wing structures to develop when they were grafted to a slit in the anterior side of stage 19–23 chick wing buds. Supernumerary digits developed in 43% of the wings that received anterior grafts of Hensen's node from stage 4–6 quail or chick embryos; in addition, 16% of the wings had rods of SN cartilage, but not recognizable SN digits. The grafted quail tissue did not contribute to the SN structures. When tissue anterior or lateral to Hensen's node or lateral pieces of the area pellucida caudal to Hensen's node were grafted to anterior slits, the wings usually developed normally. No SN structures developed when Hensen's nodes were grafted to posterior slits in chick wing buds. Wings developed normally when pieces of the dorsal lip of the blastopore from stage 10–11.5 frog ( Xenopus laevis and Rana pipiens ) embryos were grafted to anterior slits. No SN digits developed when other tissues that have limb-inducing activity in adult urodele amphibians [chick otic vesicle, frog ( Rana pipiens ) lung and kidney] or that can act as heteroinductors in neural induction (rat kidney, lung, submaxillary gland and urinary bladder; mouse liver and submaxillary gland) were grafted to anterior slits in chick wing buds. SN digits also failed to develop following preaxial grafts of chick optic vesicles. These results suggest that although the anteroposterior polarity of the chick wing bud can be influenced by factors other than the ZPA (e.g., Hensen's node, retinoids), the wing is not so labile that it can respond to a wide variety of inductively-active tissues.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47510/1/427_2004_Article_BF00376155.pd

    A computational study of magnesium point defects and diffusion in forsterite

    Get PDF
    We have studied the formation and migration of point defects within the magnesium sub-lattice inforsterite using a combination of empirical and quantum mechanical modelling methodologies. Empiricalmodels based on a parameterised force field coupled to a high throughput grid computing infrastructureallow rapid evaluation of a very large number of possible defect configurations. An embedded clusterapproach reveals more accurate estimates of defect energetics for the most important defect configurations. Considering all defects in their minimum energy, equilibrium positions, we find that the lowest energy intrinsic defect is the magnesium Frenkel type, where a magnesium atom moves from the M1 site to form a split interstitial defect. This defect has 2 four-co-ordinated magnesium atoms located outside opposite triangular faces of an otherwise vacant M1 octahedron. The split interstitial defect is more stable than regular interstitials where magnesium is located in either of the two structurally vacant octahedral sites in the hexagonally close packed oxygen lattice. M1 vacancies are also found to form when iron(II) oxidises to iron(III). The energy of the defects away fromthe equilibrium positions allows the energy barrier to diffusion to be calculated.Wehave considered the migration of both magnesium vacancies and interstitials and find that vacancies are more mobile. When the contribution from the formation energy of the defects is included we arrive at activation energies for vacancy diffusion that are in agreement with experiment

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

    No full text
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE's experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE

    No full text
    International audienceThe preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation
    corecore