5 research outputs found

    Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: Preclinical evaluation and results of the Phase II DUX Study in chemotherapy-refractory, advanced colorectal cancer

    No full text
    PurposeThis preclinical and phase II study evaluated the efficacy and safety of the combination of cetuximab and erlotinib in metastatic colorectal cancer (mCRC).Patients and methodsThe activity and mechanism of action of the combination of cetuximab plus erlotinib were investigated in vitro in colorectal cancer cell lines. In the clinical study, patients with chemotherapy-refractory mCRC were treated with cetuximab 400 mg/m(2) as a loading dose and then weekly cetuximab 250 mg/m(2) with erlotinib 100 mg orally daily. The primary end point was response rate (RR), which was evaluated separately in KRAS wild-type (WT) versus KRAS mutant tumors. Secondary end points included toxicity, progression-free survival (PFS), and overall survival. Target accrual was 50 patients, with a one-stage design.ResultsPreclinical studies demonstrated synergistic activity of cetuximab and erlotinib cotreatment on growth inhibition of colon cancer cell lines both as a result of enhanced inhibition of the epidermal growth factor receptor pathway and differential effects on STAT3. In the clinical study, 50 patients were enrolled, with 48 patients evaluable for response. The overall RR was 31% (95% CI, 26% to 57%), with a median PFS of 4.6 months (95% CI, 2.8 to 5.6 months). RR was 41% (95% CI, 26% to 57%) in KRAS WT tumors, with a median PFS of 5.6 months (95% CI, 2.9 to 5.6 months). There was no response in 11 patients with KRAS mutations. Frequent grade 3 and 4 toxicities were rash (48%), hypomagnesaemia (18%), and fatigue (10%).ConclusionThe combination of cetuximab and erlotinib synergistically inhibits growth of colon cancer cell lines, achieves promising efficacy in patients with KRAS WT mCRC, and merits evaluation in further randomized studies.Andrew J. Weickhardt, Tim J. Price, Geoff Chong, Val Gebski, Nick Pavlakis, Terrance G. Johns, Arun Azad, Effie Skrinos, Kate Fluck, Alexander Dobrovic, Renato Salemi, Andrew M. Scott, John M. Mariadason, and Niall C. Tebbut

    NDRG2, a novel regulator of myoblast proliferation, is regulated by anabolic and catabolic factors

    No full text
    Skeletal muscle tissue undergoes adaptive changes in response to stress and the genes that control these processes are incompletely characterised. NDRG2 (N-myc downstream-regulated gene 2), a stress- and growth-related gene, was investigated in skeletal muscle growth and adaption. While NDRG2 expression levels were found to be up-regulated in both differentiated human and mouse myotubes compared with undifferentiated myoblasts, the suppression of NDRG2 in C2C12 myoblasts resulted in slowed myoblast proliferation. The increased expression levels of the cell cycle inhibitors, p21 Waf1/Cip1 and p27 Kip1, and of various muscle differentiation markers in NDRG2-deficient myoblasts indicate that a lack of NDRG2 promoted cell cycle exiting and the onset of myogenesis. Furthermore, the analysis of NDRG2 regulation in C2C12 myotubes treated with catabolic and anabolic agents and in skeletal muscle from human subjects following resistance exercise training revealed NDRG2 gene expression to be down-regulated during hypertrophic conditions, and conversely, up-regulated during muscle atrophy. Together, these data demonstrate that NDRG2 expression is highly responsive to different stress conditions in skeletal muscle and suggest that the level of NDRG2 expression may be critical to myoblast growth and differentiation

    Defects of steroidogenesis

    No full text
    In the biosynthesis of steroid hormones the neutral lipid cholesterol, a normal constituent of lipid bilayers is transformed via a series of hydroxylation, oxidation, and reduction steps into a vast array of biologically active compounds: mineralocorticoids, glucocorticoids, and sex hormones. Glucocorticoids regulate many aspects of metabolism and immune function, whereas mineralocorticoids help maintain blood volume and control renal excretion of electrolytes. Sex hormones are essential for sex differentiation in male and support reproduction. They include androgens, estrogens, and progestins. A block in the pathway of steroid biosynthesis leads to the lack of hormones downstream and accumulation of the upstream compounds that can activate other members of the steroid receptor family. This review deals with the clinical consequences of these blocks
    corecore