5 research outputs found

    In Silico Study of Rett Syndrome Treatment-Related Genes, MECP2, CDKL5, and FOXG1, by Evolutionary Classification and Disordered Region Assessment

    Get PDF
    Rett syndrome (RTT), a neurodevelopmental disorder, is mainly caused by mutations in methyl CpG-binding protein 2 (MECP2), which has multiple functions such as binding to methylated DNA or interacting with a transcriptional co-repressor complex. It has been established that alterations in cyclin-dependent kinase-like 5 (CDKL5) or forkhead box protein G1 (FOXG1) correspond to distinct neurodevelopmental disorders, given that a series of studies have indicated that RTT is also caused by alterations in either one of these genes. We investigated the evolution and molecular features of MeCP2, CDKL5, and FOXG1 and their binding partners using phylogenetic profiling to gain a better understanding of their similarities. We also predicted the structural order–disorder propensity and assessed the evolutionary rates per site of MeCP2, CDKL5, and FOXG1 to investigate the relationships between disordered structure and other related properties with RTT. Here, we provide insight to the structural characteristics, evolution and interaction landscapes of those three proteins. We also uncovered the disordered structure properties and evolution of those proteins which may provide valuable information for the development of therapeutic strategies of RTT

    Cyclin-Dependent Kinase-Like 5 (CDKL5): Possible Cellular Signalling Targets and Involvement in CDKL5 Deficiency Disorder

    No full text
    Cyclin-dependent kinase-like 5 (CDKL5, also known as STK9) is a serine/threonine protein kinase originally identified in 1998 during a transcriptional mapping project of the human X chromosome. Thereafter, a mutation in CDKL5 was reported in individuals with the atypical Rett syndrome, a neurodevelopmental disorder, suggesting that CDKL5 plays an important regulatory role in neuronal function. The disease associated with CDKL5 mutation has recently been recognised as CDKL5 deficiency disorder (CDD) and has been distinguished from the Rett syndrome owing to its symptomatic manifestation. Because CDKL5 mutations identified in patients with CDD cause enzymatic loss of function, CDKL5 catalytic activity is likely strongly associated with the disease. Consequently, the exploration of CDKL5 substrate characteristics and regulatory mechanisms of its catalytic activity are important for identifying therapeutic target molecules and developing new treatment. In this review, we summarise recent findings on the phosphorylation of CDKL5 substrates and the mechanisms of CDKL5 phosphorylation and dephosphorylation. We also discuss the relationship between changes in the phosphorylation signalling pathways and the Cdkl5 knockout mouse phenotype and consider future prospects for the treatment of mental and neurological disease associated with CDKL5 mutations

    Expression and phosphorylation state analysis of intracellular protein kinases using Multi-PK antibody and Phos-tag SDS-PAGE

    No full text
    Protein kinase expression and activity play important roles in diverse cellular functions through regulation of phosphorylation signaling. The most commonly used tools for detecting the protein kinase are protein kinase-specific antibodies, and phosphorylation site-specific antibodies were used for detecting activated protein kinase. Using these antibodies, only one kinase was analyzed at a time, however, a method for analyzing the expression and activation of a panel of protein kinases in cells is not established. Therefore, we developed a combined method using Multi-PK antibody and Phos-tag SDS-PAGE for profiling the expression and phosphorylation state of intracellular protein kinases. Using the new method, changes in the expression and phosphorylation state of various protein kinases were detected in cells treated with anticancer agent which inhibit multiple tyrosine kinase activities. Therefore, the new method is a useful technique for analysis of intracellular protein kinases.• Multi-PK antibody recognizes a wide variety of protein kinases in various species. • Using Phos-tag SDS-PAGE, phosphorylated proteins are visualized as slower migration bands compared with corresponding non-phosphorylated proteins. • This combined method can be used for detecting changes in the expression and phosphorylation state of various intracellular protein kinases
    corecore