4 research outputs found

    Neurodevelopmental Consequences of Prenatal Alcohol Exposure: Behavioural and Transcriptomic Alterations in a Mouse Model

    Get PDF
    Fetal Alcohol Spectrum Disorder (FASD) is an umbrella term referring to a range of physical, behavioural, and cognitive deficits resulting from prenatal alcohol exposure. The resulting abnormalities are heterogeneous and often attributed to timing and dosage of alcohol exposure. However, the specific effects of developmental timing are not well-known. This research used C57BL/6J (B6) as an animal model for early (human trimester one) and mid-gestation (human trimester two) alcohol exposure. Pregnant B6 mice were injected with 2.5 g/kg ethanol on gestational day (GD) 8 and 11 (trimester one equivalent), or on GD 14 and 16 (trimester two equivalent). Resulting pups were followed from birth to adulthood using FASD-relevant behavioural tests. At postnatal day (PD) 70, whole brain tissues were extracted. A third group of dams were injected on GD 16 (short-term). Two hours post injection, fetal brains were removed. Brains were used for genome-wide expression analysis, including microRNAs. Downstream analyses were completed using software packages and online databases. All ethanol-treated pups showed motor skill delays, increased activity, and spatial learning deficits. Gene expression analysis resulted in altered expression of 48 short-term genes between ethanol and control mice treated during the second trimester. Fifty-five and 68 genes were differentially-expressed in the long-term analyses of mice treated during trimester one and two, respectively. Genes involved in immune system response were disrupted across all treatments. Disrupted short-term processes included cytoskeleton development and immunological functions. Processes altered in long-term exposures included stress signaling, DNA stability, and cellular proliferation. MicroRNA analyses returned eight and 20 differentially-expressed miRNAs in trimesters one and two, respectively. Target filtering of trimester one microRNAs and mRNAs resulted in inverse relationships between miR-532-5p and Atf1, Itpripl2, and Stxbp6. Trimester two target filtering resulted in miR-302c targeting Ccdc6. Gene expression and microRNA results demonstrate the stage-specific genes and processes altered during neurodevelopment upon ethanol exposure. Certain cellular processes are disrupted no matter the timing of ethanol exposure. Given that microRNAs are fine-tuners of gene expression, they may play an important role in the maintenance of FASD. Furthermore, transcriptomic changes in the brain may explain the observed behavioural effects of prenatal ethanol exposure

    Long-Term Genomic and Epigenomic Dysregulation as a Consequence of Prenatal Alcohol Exposure: A Model for Fetal Alcohol Spectrum Disorders

    Get PDF
    There is abundant evidence that prenatal alcohol exposure leads to a range of behavioral and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs). These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation. This review integrates recent data that has progressed our understanding FASD as a continuum of molecular events, beginning with cellular stress response and ending with a long-term footprint of epigenetic dysregulation across the genome. It reports on data from multiple ethanol-treatment paradigms in mouse models that identify changes in gene expression that occur with respect to neurodevelopmental timing of exposure and ethanol dose. These studies have identified patterns of genomic alteration that are dependent on the biological processes occurring at the time of ethanol exposure. This review also adds to evidence that epigenetic processes such as DNA methylation, histone modifications, and non-coding RNA regulation may underlie long-term changes to gene expression patterns. These may be initiated by ethanol-induced alterations to DNA and histone methylation, particularly in imprinted regions of the genome, affecting transcription which is further fine-tuned by altered microRNA expression. These processes are likely complex, genome-wide, and interrelated. The proposed model suggests a potential for intervention, given that epigenetic changes are malleable and may be altered by postnatal environment. This review accentuates the value of mouse models in deciphering the molecular etiology of FASD, including those processes that may provide a target for the ammelioration of this common yet entirely preventable disorder

    Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice

    No full text
    SUMMARY Fetal alcohol spectrum disorders (FASDs) are characterized by life-long changes in gene expression, neurodevelopment and behavior. What mechanisms initiate and maintain these changes are not known, but current research suggests a role for alcohol-induced epigenetic changes. In this study we assessed alterations to adult mouse brain tissue by assaying DNA cytosine methylation and small noncoding RNA (ncRNA) expression, specifically the microRNA (miRNA) and small nucleolar RNA (snoRNA) subtypes. We found long-lasting alterations in DNA methylation as a result of fetal alcohol exposure, specifically in the imprinted regions of the genome harboring ncRNAs and sequences interacting with regulatory proteins. A large number of major nodes from the identified networks, such as Pten signaling, contained transcriptional repressor CTCF-binding sites in their promoters, illustrating the functional consequences of alcohol-induced changes to DNA methylation. Next, we assessed ncRNA expression using two independent array platforms and quantitative PCR. The results identified 34 genes that are targeted by the deregulated miRNAs. Of these, four (Pten, Nmnat1, Slitrk2 and Otx2) were viewed as being crucial in the context of FASDs given their roles in the brain. Furthermore, ∌20% of the altered ncRNAs mapped to three imprinted regions (Snrpn-Ube3a, Dlk1-Dio3 and Sfmbt2) that showed differential methylation and have been previously implicated in neurodevelopmental disorders. The findings of this study help to expand on the mechanisms behind the long-lasting changes in the brain transcriptome of FASD individuals. The observed changes could contribute to the initiation and maintenance of the long-lasting effect of alcohol

    The Art of Measuring Physical Parameters in Galaxies: A Critical Assessment of Spectral Energy Distribution Fitting Techniques

    No full text
    The study of galaxy evolution hinges on our ability to interpret multiwavelength galaxy observations in terms of their physical properties. To do this, we rely on spectral energy distribution (SED) models, which allow us to infer physical parameters from spectrophotometric data. In recent years, thanks to wide and deep multiwave band galaxy surveys, the volume of high-quality data have significantly increased. Alongside the increased data, algorithms performing SED fitting have improved, including better modeling prescriptions, newer templates, and more extensive sampling in wavelength space. We present a comprehensive analysis of different SED-fitting codes including their methods and output with the aim of measuring the uncertainties caused by the modeling assumptions. We apply 14 of the most commonly used SED-fitting codes on samples from the CANDELS photometric catalogs at z ∌ 1 and z ∌ 3. We find agreement on the stellar mass, while we observe some discrepancies in the star formation rate (SFR) and dust-attenuation results. To explore the differences and biases among the codes, we explore the impact of the various modeling assumptions as they are set in the codes (e.g., star formation histories, nebular, dust and active galactic nucleus models) on the derived stellar masses, SFRs, and A _V values. We then assess the difference among the codes on the SFR–stellar mass relation and we measure the contribution to the uncertainties by the modeling choices (i.e., the modeling uncertainties) in stellar mass (∌0.1 dex), SFR (∌0.3 dex), and dust attenuation (∌0.3 mag). Finally, we present some resources summarizing best practices in SED fitting
    corecore