45 research outputs found

    Assessment of cardiac function in donor and recipient fetuses during a 7-day follow-up after selective laser photocoagulation of communicating vessels due to TTTS

    Get PDF
    Objectives: The aim of the study was to analyze the changes in cardiac function and myocardial contractility of donor and recipient fetuses with twin-to-twin transfusion syndrome (TTTS) subjected to selective laser photocoagulation of the communicating vessels (SLPCV), between and after the procedure. Finally, we verified if fetuses with Quintero’s stage I TTTS presented with early impairment of myocardial contractility.  Material and methods: We selected 77 consecutive women with twin pregnancies, whose both fetuses survived at least seven days post-SLPCV. Myocardial contractility of both fetuses was evaluated ultrasonographically, and their myocardial performance indices (Tei-Index values) and shortening fractions (SF) were determined.  Results: In donor fetuses, the Tei-Index values for both right and left ventricle remained within the respective reference ranges both before the procedure and during a 7-day follow-up. A significant change in shortening fraction values for the left ventricle in recipient fetuses and the right ventricle of in the donors was observed during a 7-day follow-up.  Conclusions: Comparison of the cardiac parameters of donors and recipients revealed significant differences in Tei-indices during the entire follow-up period.  The group with Quintero’s I stage TTTS included 74% of recipient fetuses with abnormal Tei-Index values for the right ventricle (mean 0.53).

    RhoJ/TCL Regulates Endothelial Motility and Tube Formation and Modulates Actomyosin Contractility and Focal Adhesion Numbers

    Get PDF
    Objective—RhoJ/TCL was identified by our group as an endothelial-expressed Rho GTPase. The aim of this study was to determine its tissue distribution, subcellular localization, and function in endothelial migration and tube formation. Methods and Results—Using in situ hybridization, RhoJ was localized to endothelial cells in a set of normal and cancerous tissues and in the vasculature of mouse embryos; endogenous RhoJ was localized to focal adhesions by immunofluorescence. The proangiogenic factor vascular endothelial growth factor activated RhoJ in endothelial cells. Using either small interfering (si)RNA-mediated knockdown of RhoJ expression or overexpression of constitutively active RhoJ (daRhoJ), RhoJ was found to positively regulate endothelial motility and tubule formation. Downregulating RhoJ expression increased focal adhesions and stress fibers in migrating cells, whereas daRhoJ overexpression resulted in the converse. RhoJ downregulation resulted in increased contraction of a collagen gel and increased phospho–myosin light chain, indicative of increased actomyosin contractility. Pharmacological inhibition of Rho-kinase (which phosphorylates myosin light chain) or nonmuscle myosin II reversed the defective tube formation and migration of RhoJ knockdown cells. Conclusion—RhoJ is endothelial-expressed in vivo, activated by vascular endothelial growth factor, localizes to focal adhesions, regulates endothelial cell migration and tube formation, and modulates actomyosin contractility and focal adhesion numbers

    Polysaccharide BAP1 of Bifidobacterium adolescentis CCDM 368 is a biologically active molecule with immunomodulatory properties

    Get PDF
    Bifidobacteria are among the most common bacteria used for their probiotic properties and their impact on the maturation and function of the immune system has been well-described. Recently, scientific interest is shifting from live bacteria to defined bacteria-derived biologically active molecules. Their greatest advantage over probiotics is the defined structure and the effect independent of the viability status of the bacteria. Here, we aim to characterize Bifidobacterium adolescentis CCDM 368 surface antigens that include polysaccharides (PSs), lip-oteichoic acids (LTAs), and peptidoglycan (PG). Among them, Bad368.1 PS was observed to modulate OVA-induced cytokine production in cells isolated from OVA-sensitized mice by increasing the production of Th1-related IFN-gamma and inhibition of Th2-related IL-5 and IL-13 cytokines (in vitro). Moreover, Bad368.1 PS (BAP1) is efficiently engulfed and transferred between epithelial and dendritic cells. Therefore, we propose that the Bad368.1 PS (BAP1) can be used for the modulation of allergic diseases in humans. Structural studies revealed that Bad368.1 PS has an average molecular mass of approximately 9,99 x 106 Da and it consists of glucose, galactose, and rhamnose residues that are creating the following repeating unit: [-> 2)-beta-D-Glcp-(1 -> 3)-beta-L-Rhap-(1 -> 4)-beta-D-Glcp-(1 -> 3)-alpha-L-Rhap-(1 -> 4)-beta-D-Glcp-(1 -> 3)-alpha-D-Galp-(1 -> ]

    Should Data Drive Private Law?

    Get PDF
    This special issue tackles the question of whether and how data shapes private law. The development of new technologies enabled the generation, collection and processing of both personal and non-personal data on an unprecedented scale. The implications of this phenomenon for private law are threefold. One, how does data affect our understanding of technology regulation in private law relationships? Two, how does data affect the way in which private law is applied? Three, what is the role of data in the design of law from a public policy perspective that transcends doctrinal considerations relating to private law

    Perinatal and neonatal outcome in patients with preeclampsia

    Get PDF
    Objectives: Preeclampsia (PE) affects 2–5% of pregnant women. Hypertensive disorders of pregnancy are associated with adverse maternal and perinatal outcomes. Material and methods: This study included 88 women showing gestational hypertension (GH) or PE symptoms, and their newborns. Results: The rate of FGR was 43% for mothers with PE, compared to 8% with GH. The association was significant, p = < 0.001 but with moderate strength, Cramer’s V = 0.40. The risk of FGR increased nine times when PE occurred, as the odds ratio was 9.25 (CI: 2.46–34.83), p = 0.001. PE was associated with FGR risk if delivery time was less than 34 weeks compared to a delivery time of more than 34 weeks. This was 82% of FGR cases for < 34 weeks, compared with 35% of cases in > 34 group, (p = 0.001; Cramer’s V = 0.50). PE was also associated (p = 0.01, Cramer’s V = 0.27) with the type of delivery, as the caesarean section rate was 74%, compared to 50% in the GH group. This made it three times higher the likelihood of delivery by caesarean section, as the odds ratio was 3.10 (CI: 1.24–7.75), p=0,02. Delivery time was significantly (p < 0.001) shortened to 38 weeks (27–41), compared to 40 weeks (38–42) GH mothers. There was no distinction in median age for PE and GH mothers (p = 0.124). The overall clinical status of neonates was proportional despite the mother’s PE. The sum of Apgar points in the first, and then the second to third minute, did not differ significantly, p = 0.370 and 0.560, respectively. The number of peripheral blood platelets and leucocytes was not reduced (p = 0.821 and 0.534) in infants when the mother suffered from PE. Conclusions: The prediction of adverse maternal outcomes from hypertensive diseases of pregnancy is key to optimal management, including the timing of delivery and planning for the most appropriate place of care.

    Hypoxia-induced SETX links replication stress with the unfolded protein response.

    Get PDF
    Tumour hypoxia is associated with poor patient prognosis and therapy resistance. A unique transcriptional response is initiated by hypoxia which includes the rapid activation of numerous transcription factors in a background of reduced global transcription. Here, we show that the biological response to hypoxia includes the accumulation of R-loops and the induction of the RNA/DNA helicase SETX. In the absence of hypoxia-induced SETX, R-loop levels increase, DNA damage accumulates, and DNA replication rates decrease. Therefore, suggesting that, SETX plays a role in protecting cells from DNA damage induced during transcription in hypoxia. Importantly, we propose that the mechanism of SETX induction in hypoxia is reliant on the PERK/ATF4 arm of the unfolded protein response. These data not only highlight the unique cellular response to hypoxia, which includes both a replication stress-dependent DNA damage response and an unfolded protein response but uncover a novel link between these two distinct pathways

    WSB-1 regulates the metastatic potential of hormone receptor negative breast cancer

    Get PDF
    © 2018 Cancer Research UK. Background: Metastatic spread is responsible for the majority of cancer-associated deaths. The tumour microenvironment, including hypoxia, is a major driver of metastasis. The aim of this study was to investigate the role of the E3 ligase WSB-1 in breast cancer biology in the context of the hypoxic tumour microenvironment, particularly regarding metastatic spread. Methods: In this study, WSB-1 expression was evaluated in breast cancer cell lines and patient samples. In silico analyses were used to determine the impact of WSB-1 expression on distant metastasis-free survival (DMFS) in patients, and correlation between WSB1 expression and hypoxia gene expression signatures. The role of WSB-1 on metastasis promotion was evaluated in vitro and in vivo. Results: High WSB1 expression was associated with decreased DMFS in ER-breast cancer and PR-breast cancer patients. Surprisingly, WSB1 expression was not positively correlated with known hypoxic gene expression signatures in patient samples. Our study is the first to show that WSB-1 knockdown led to decreased metastatic potential in breast cancer hormone receptor-negative models in vitro and in vivo. WSB-1 knockdown was associated with decreased metalloproteinase (MMP) activity, vascular endothelial growth factor (VEGF) secretion, and angiogenic potential. Conclusions: Our data suggests that WSB-1 may be an important regulator of aggressive metastatic disease in hormone receptor-negative breast cancer. WSB-1 could therefore represent a novel regulator and therapeutic target for secondary breast cancer in these patients

    Signalling and function of the small Rho GTPase RhoJ in endothelial cells

    Get PDF
    RhoJ is an endothelial expressed Rho GTPase, and its knock-down impairs endothelial cell (EC) migration and tubulogenesis, increases stress fibre (SF) and focal adhesion (FA) numbers. This work aimed to determine the intracellular localisation of RhoJ, identify its binding partners, test how it is activated and further explore its function in ECs. Endogenous RhoJ localised to FAs and overexpression of its active mutant (daRhoJ) promoted EC migration, and diminished FA and SF numbers. In addition to FAs, overexpressed RhoJ localised also to endosomes and RhoJ knock-down slightly delayed transferrin recycling. Vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF-2) and thrombin activated RhoJ in ECs. PAK-interacting exchange factor β (βPIX) and G protein-coupled receptor kinase-interacting target 1 (GIT1), which promote FA disassembly, were identified as RhoJ-binding partners. RhoJ co-localised with these proteins in ECs, and βPIX knock-down and to a lesser extent GIT1 knock-down reduced RhoJ localisation to FAs. Overexpression of daRhoJ increased the amount of GIT1 and βPIX in FAs, and increased the total amount of the βPIX protein in ECs. In conclusion, RhoJ localises to FAs, promotes EC migration, regulates FA and SF numbers, interacts with βPIX and GIT1 and is activated by pro-angiogenic factors
    corecore