6,766 research outputs found

    Phonon emission and arrival times of electrons from a single-electron source

    Get PDF
    In recent charge-pump experiments, single electrons are injected into quantum Hall edge channels at energies significantly above the Fermi level. We consider here the relaxation of these hot edge-channel electrons through longitudinal-optical-phonon emission. Our results show that the probability for an electron in the outermost edge channel to emit one or more phonons en route to a detector some microns distant along the edge channel suffers a double-exponential suppression with increasing magnetic field. This explains recent experimental observations. We also describe how the shape of the arrival-time distribution of electrons at the detector reflects the velocities of the electronic states post phonon emission. We show how this can give rise to pronounced oscillations in the arrival-time-distribution width as a function of magnetic field or electron energy

    Picosecond coherent electron motion in a silicon single-electron source

    Full text link
    Understanding ultrafast coherent electron dynamics is necessary for application of a single-electron source to metrological standards, quantum information processing, including electron quantum optics, and quantum sensing. While the dynamics of an electron emitted from the source has been extensively studied, there is as yet no study of the dynamics inside the source. This is because the speed of the internal dynamics is typically higher than 100 GHz, beyond state-of-the-art experimental bandwidth. Here, we theoretically and experimentally demonstrate that the internal dynamics in a silicon singleelectron source comprising a dynamic quantum dot can be detected, utilising a resonant level with which the dynamics is read out as gate-dependent current oscillations. Our experimental observation and simulation with realistic parameters show that an electron wave packet spatially oscillates quantum-coherently at \sim 200 GHz inside the source. Our results will lead to a protocol for detecting such fast dynamics in a cavity and offer a means of engineering electron wave packets. This could allow high-accuracy current sources, high-resolution and high-speed electromagnetic-field sensing, and high-fidelity initialisation of flying qubits

    Galactic-Center Hyper-Shell Model for the North Polar Spurs

    Get PDF
    The bipolar-hyper shell (BHS) model for the North Polar Spurs (NPS-E, -W, and Loop I) and counter southern spurs (SPS-E and -W) is revisited based on numerical hydrodynamical simulations. Propagations of shock waves produced by energetic explosive events in the Galactic Center are examined. Distributions of soft X-ray brightness on the sky at 0.25, 0.7, and 1.5 keV in a +/-50 deg x +/-50 deg region around the Galactic Center are modeled by thermal emission from high-temperature plasma in the shock-compressed shell considering shadowing by the interstellar HI and H2 gases. The result is compared with the ROSAT wide field X-ray images in R2, 4 and 6 bands. The NPS and southern spurs are well reproduced by the simulation as shadowed dumbbell-shaped shock waves. We discuss the origin and energetics of the event in relation to the starburst and/or AGN activities in the Galactic Center. [ High resolution pdf is available at http://www.ioa.s.u-tokyo.ac.jp/~sofue/htdocs/2016bhs/ ]Comment: 13 pages, 20 figures; To appear in MNRA

    Pulse-induced acoustoelectric vibrations in surface-gated GaAs-based quantum devices

    Full text link
    We present the results of a numerical investigation which show the excitation of acoustoelectric modes of vibration in GaAs-based heterostructures due to sharp nano-second electric-field pulses applied across surface gates. In particular, we show that the pulses applied in quantum information processing applications are capable of exciting acoustoelectric modes of vibration including surface acoustic modes which propagate for distances greater than conventional device dimensions. We show that the pulse-induced acoustoelectric vibrations are capable of inducing significant undesired perturbations to the evolution of quantum systems.Comment: To be published in Phys. Rev.

    Needle Tip Force Estimation using an OCT Fiber and a Fused convGRU-CNN Architecture

    Full text link
    Needle insertion is common during minimally invasive interventions such as biopsy or brachytherapy. During soft tissue needle insertion, forces acting at the needle tip cause tissue deformation and needle deflection. Accurate needle tip force measurement provides information on needle-tissue interaction and helps detecting and compensating potential misplacement. For this purpose we introduce an image-based needle tip force estimation method using an optical fiber imaging the deformation of an epoxy layer below the needle tip over time. For calibration and force estimation, we introduce a novel deep learning-based fused convolutional GRU-CNN model which effectively exploits the spatio-temporal data structure. The needle is easy to manufacture and our model achieves a mean absolute error of 1.76 +- 1.5 mN with a cross-correlation coefficient of 0.9996, clearly outperforming other methods. We test needles with different materials to demonstrate that the approach can be adapted for different sensitivities and force ranges. Furthermore, we validate our approach in an ex-vivo prostate needle insertion scenario.Comment: Accepted for Publication at MICCAI 201

    Coulomb Blockade and Kondo Effect in a Quantum Hall Antidot

    Full text link
    We propose a general capacitive model for an antidot, which has two localized edge states with different spins in the quantum Hall regime. The capacitive coupling of localized excess charges, which are generated around the antidot due to magnetic flux quantization, and their effective spin fluctuation can result in Coulomb blockade, h/(2e) Aharonov-Bohm oscillations, and the Kondo effect. The resultant conductance is in qualitative agreement with recent experimental data.Comment: 3 figures, to appear in Physical Review Letter

    A numerical investigation of a piezoelectric surface acoustic wave interaction with a one-dimensional channel

    Full text link
    We investigate the propagation of a piezoelectric surface acoustic wave (SAW) across a GaAs/AlX_XGa1X_{1-X}As heterostructure surface, on which there is fixed a metallic split-gate. Our method is based on a finite element formulation of the underlying equations of motion, and is performed in three-dimensions fully incorporating the geometry and material composition of the substrate and gates. We demonstrate attenuation of the SAW amplitude as a result of the presence of both mechanical and electrical gates on the surface. We show that the incorporation of a simple model for the screening by the two-dimensional electron gas (2DEG), results in a total electric potential modulation that suggests a mechanism for the capture and release of electrons by the SAW. Our simulations suggest the absence of any significant turbulence in the SAW motion which could hamper the operation of SAW based quantum devices of a more complex geometry.Comment: 8 pages, 8 figure

    Electron interactions in an antidot in the integer quantum Hall regime

    Full text link
    A quantum antidot, a submicron depletion region in a two-dimensional electron system, has been actively studied in the past two decades, providing a powerful tool for understanding quantum Hall systems. In a perpendicular magnetic field, electrons form bound states around the antidot. Aharonov-Bohm resonances through such bound states have been experimentally studied, showing interesting phenomena such as Coulomb charging, h/2e oscillations, spectator modes, signatures of electron interactions in the line shape, Kondo effect, etc. None of them can be explained by a simple noninteracting electron approach. Theoretical models for the above observations have been developed recently, such as a capacitive-interaction model for explaining the h/2e oscillations and the Kondo effect, numerical prediction of a hole maximum-density-droplet antidot ground state, and spin density-functional theory for investigating the compressibility of antidot edges. In this review, we summarize such experimental and theoretical works on electron interactions in antidots.Comment: 73 pages, 28 figures, to be published in Physics Reports. The resolution of some figures is reduced in this uploa
    corecore