41 research outputs found

    Reductive Catalytic Fractionation of Corn Stover Lignin

    Get PDF
    Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 °C in methanol and, in the presence or absence of an acid cocatalyst (H₃PO₄ or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residual solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 °C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 °C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 °C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 °C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed that soluble oligomers are formed via solvolysis, followed by further fragmentation on the catalyst surface via hydrogenolysis. Overall, the results show that clear trade-offs exist between the levels of lignin extraction, monomer yields, and carbohydrate retention in the residual solids for different RCF conditions of corn stover.National Science Foundation (U.S.) (1454299

    Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production

    Get PDF
    Background Lignocellulosic biomass is one of the most promising renewable and clean energy resources to reduce greenhouse gas emissions and dependence on fossil fuels. However, the resistance to accessibility of sugars embedded in plant cell walls (so-called recalcitrance) is a major barrier to economically viable cellulosic ethanol production. A recent report from the US National Academy of Sciences indicated that, “absent technological breakthroughs”, it was unlikely that the US would meet the congressionally mandated renewable fuel standard of 35 billion gallons of ethanol-equivalent biofuels plus 1 billion gallons of biodiesel by 2022. We here describe the properties of switchgrass (Panicum virgatum) biomass that has been genetically engineered to increase the cellulosic ethanol yield by more than 2-fold. Results We have increased the cellulosic ethanol yield from switchgrass by 2.6-fold through overexpression of the transcription factor PvMYB4. This strategy reduces carbon deposition into lignin and phenolic fermentation inhibitors while maintaining the availability of potentially fermentable soluble sugars and pectic polysaccharides. Detailed biomass characterization analyses revealed that the levels and nature of phenolic acids embedded in the cell-wall, the lignin content and polymer size, lignin internal linkage levels, linkages between lignin and xylans/pectins, and levels of wall-bound fucose are all altered in PvMYB4-OX lines. Genetically engineered PvMYB4-OX switchgrass therefore provides a novel system for further understanding cell wall recalcitrance. Conclusions Our results have demonstrated that overexpression of PvMYB4, a general transcriptional repressor of the phenylpropanoid/lignin biosynthesis pathway, can lead to very high yield ethanol production through dramatic reduction of recalcitrance. MYB4-OX switchgrass is an excellent model system for understanding recalcitrance, and provides new germplasm for developing switchgrass cultivars as biomass feedstocks for biofuel production. Keywords: Switchgrass; Bioenergy; Biofuel; Feedstock; Cellulosic ethanol; PvMYB4; Transcription factor; Cell wall; Recalcitrance; Lignin; Hemicellulose; Pecti

    リグニン ノ ベータ - O - 4 ケツゴウ カイレツ ニ カンスル ケンキュウ : TIZホウ ト カイリョウ ニトロベンゼン サンカホウ

    No full text
    京都大学0048新制・課程博士博士(農学)甲第11653号農博第1509号新制||農||911(附属図書館)学位論文||H17||N4046(農学部図書室)23296UT51-2005-D402京都大学大学院農学研究科森林科学専攻(主査)教授 中坪 文明, 教授 西尾 嘉之, 教授 松本 孝芳学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDA

    Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility

    No full text
    Abstract Background In converting biomass to bioethanol, pretreatment is a key step intended to render cellulose more amenable and accessible to cellulase enzymes and thus increase glucose yields. In this study, four cellulose samples with different degrees of polymerization and crystallinity indexes were subjected to aqueous sodium hydroxide and anhydrous liquid ammonia treatments. The effects of the treatments on cellulose crystalline structure were studied, in addition to the effects on the digestibility of the celluloses by a cellulase complex. Results From X-ray diffractograms and nuclear magnetic resonance spectra, it was revealed that treatment with liquid ammonia produced the cellulose IIII allomorph; however, crystallinity depended on treatment conditions. Treatment at a low temperature (25°C) resulted in a less crystalline product, whereas treatment at elevated temperatures (130°C or 140°C) gave a more crystalline product. Treatment of cellulose I with aqueous sodium hydroxide (16.5 percent by weight) resulted in formation of cellulose II, but also produced a much less crystalline cellulose. The relative digestibilities of the different cellulose allomorphs were tested by exposing the treated and untreated cellulose samples to a commercial enzyme mixture (Genencor-Danisco; GC 220). The digestibility results showed that the starting cellulose I samples were the least digestible (except for corn stover cellulose, which had a high amorphous content). Treatment with sodium hydroxide produced the most digestible cellulose, followed by treatment with liquid ammonia at a low temperature. Factor analysis indicated that initial rates of digestion (up to 24 hours) were most strongly correlated with amorphous content. Correlation of allomorph type with digestibility was weak, but was strongest with cellulose conversion at later times. The cellulose IIII samples produced at higher temperatures had comparable crystallinities to the initial cellulose I samples, but achieved higher levels of cellulose conversion, at longer digestion times. Conclusions Earlier studies have focused on determining which cellulose allomorph is the most digestible. In this study we have found that the chemical treatments to produce different allomorphs also changed the crystallinity of the cellulose, and this had a significant effect on the digestibility of the substrate. When determining the relative digestibilities of different cellulose allomorphs it is essential to also consider the relative crystallinities of the celluloses being tested.</p

    Metal-Free Aqueous Flow Battery with Novel Ultrafiltered Lignin as Electrolyte

    No full text
    As the number of generation sources from intermittent renewable technologies on the electric grid increases, the need for large-scale energy storage devices is becoming essential to ensure grid stability. Flow batteries offer numerous advantages over conventional sealed batteries for grid storage. In this work, for the first time, we investigated lignin, the second most abundant wood derived biopolymer, as an anolyte for the aqueous flow battery. Lignosulfonate, a water-soluble derivative of lignin, is environmentally benign, low cost and abundant as it is obtained from the byproduct of paper and biofuel manufacturing. The lignosulfonate utilizes the redox chemistry of quinone to store energy and undergoes a reversible redox reaction. Here, we paired lignosulfonate with Br<sub>2</sub>/Br<sup>–</sup>, and the full cell runs efficiently with high power density. Also, the large and complex molecular structure of lignin considerably reduces the electrolytic crossover, which ensures very high capacity retention. The flowcell was able to achieve current densities of up to 20 mA/cm<sup>2</sup> and charge polarization resistance of 15 ohm cm<sup>2</sup>. This technology presents a unique opportunity for a low-cost, metal-free flow battery capable of large-scale sustainable energy storage

    Solid-State Selective <sup>13</sup>C Excitation and Spin Diffusion NMR To Resolve Spatial Dimensions in Plant Cell Walls

    No full text
    The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a <sup>13</sup>C cross-polarization (CP) SELDOM (<i>sel</i>ectively by <i>d</i>estruction <i>o</i>f <i>m</i>agnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. <sup>13</sup>C spin diffusion time constants (<i>T</i><sub>SD</sub>) were extracted using a two-site spin diffusion theory developed for <sup>13</sup>C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated <sup>13</sup>C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances ∼0.7–2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations

    Multiplexed fitness profiling by RB-TnSeq elucidates pathways for lignin-related aromatic catabolism in Sphingobium sp. SYK-6

    No full text
    Summary: Bioconversion of lignin-related aromatic compounds relies on robust catabolic pathways in microbes. Sphingobium sp. SYK-6 (SYK-6) is a well-characterized aromatic catabolic organism that has served as a model for microbial lignin conversion, and its utility as a biocatalyst could potentially be further improved by genome-wide metabolic analyses. To this end, we generate a randomly barcoded transposon insertion mutant (RB-TnSeq) library to study gene function in SYK-6. The library is enriched under dozens of enrichment conditions to quantify gene fitness. Several known aromatic catabolic pathways are confirmed, and RB-TnSeq affords additional detail on the genome-wide effects of each enrichment condition. Selected genes are further examined in SYK-6 or Pseudomonas putida KT2440, leading to the identification of new gene functions. The findings from this study further elucidate the metabolism of SYK-6, while also providing targets for future metabolic engineering in this organism or other hosts for the biological valorization of lignin
    corecore