131 research outputs found
High Pressure Thermoelasticity of Body-centered Cubic Tantalum
We have investigated the thermoelasticity of body-centered cubic (bcc)
tantalum from first principles by using the linearized augmented plane wave
(LAPW) and mixed--basis pseudopotential methods for pressures up to 400 GPa and
temperatures up to 10000 K. Electronic excitation contributions to the free
energy were included from the band structures, and phonon contributions were
included using the particle-in-a-cell (PIC) model. The computed elastic
constants agree well with available ultrasonic and diamond anvil cell data at
low pressures, and shock data at high pressures. The shear modulus and
the anisotropy change behavior with increasing pressure around 150 GPa because
of an electronic topological transition. We find that the main contribution of
temperature to the elastic constants is from the thermal expansivity. The PIC
model in conjunction with fast self-consistent techniques is shown to be a
tractable approach to studying thermoelasticity.Comment: To be appear in Physical Review
An ultrasonic frequency sweep interferometer for liquids at high temperature: 2. Mechanical assembly, signal processing, and application
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94631/1/jgrb14130.pd
Microseismic joint location and anisotropic velocity inversion for hydraulic fracturing in a tight Bakken reservoir
To improve the accuracy of microseismic event locations, we developed a new inversion method with double-difference constraints for determining the hypocenters and the anisotropic velocity model for unconventional reservoirs. We applied this method to a microseismic data set monitoring a Middle Bakken completion in the Beaver Lodge area of North Dakota. Geophone arrays in four observation wells improved the ray coverage for the velocity inversion. Using an accurate anisotropic velocity model is important to correctly assess the height growth of the hydraulically induced fractures in the Middle Bakken. Our results showed that (1) moderate-to-strong anisotropy exists in all studied sedimentary layers, especially in the Upper and Lower Bakken shale formations, where the Thomsen parameters (Ï” and Îł) can be greater than 0.4, (2) all the events selected for high signal-to-noise ratio and used for the joint velocity inversion are located in the Bakken and overlying Lodgepole formations, i.e., no events are detected in the Three Forks formation below the Bakken, and (3) more than half of the strong events are in two clusters at approximately 100 and 150 m above the Middle Bakken. Reoccurrence of strong, closely clustered events suggested activation of natural fractures or faults in the Lodgepole formation. The sensitivity analysis for the inversion results showed that the relative uncertainty in parameter ÎŽ is larger than other anisotropy parameters. The microseismic event locations and the anisotropic velocity model are validated by comparing synthetic and observed seismic waveforms and by S-wave splitting.Shell Oil Compan
Frustrated H-Induced Instability of Mo(110)
Using helium atom scattering Hulpke and L"udecke recently observed a giant
phonon anomaly for the hydrogen covered W(110) and Mo(110) surfaces. An
explanation which is able to account for this and other experiments is still
lacking. Below we present density-functional theory calculations of the atomic
and electronic structure of the clean and hydrogen-covered Mo(110) surfaces.
For the full adsorbate monolayer the calculations provide evidence for a strong
Fermi surface nesting instability. This explains the observed anomalies and
resolves the apparent inconsistencies of different experiments.Comment: 4 pages, 2 figures, submitted to PR
An ultrasonic frequency sweep interferometer for liquids at high temperature: 1. Acoustic model
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95075/1/jgrb14010.pd
Compressibility of titanosilicate melts
The effect of composition on the relaxed adiabatic bulk modulus (K0) of a range of alkali- and alkaline earth-titanosilicate [X 2 n/n+ TiSiO5 (X=Li, Na, K, Rb, Cs, Ca, Sr, Ba)] melts has been investigated. The relaxed bulk moduli of these melts have been measured using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz in the temperature range of 950 to 1600°C (0.02 Pa s < s < 5 Pa s). The bulk moduli of these melts decrease with increasing cation size from Li to Cs and Ca to Ba, and with increasing temperature. The bulk moduli of the Li-, Na-, Ca- and Ba-bearing metasilicate melts decrease with the addition of both TiO2 and SiO2 whereas those of the K-, Rb- and Cs-bearing melts increase. Linear fits to the bulk modulus versus volume fraction of TiO2 do not converge to a common compressibility of the TiO2 component, indicating that the structural role of TiO2 in these melts is dependent on the identity of the cation. This proposition is supported by a number of other property data for these and related melt compositions including heat capacity and density, as well as structural inferences from X-ray absorption spectroscopy (XANES). The compositional dependence of the compressibility of the TiO2 component in these melts explains the difficulty incurred in previous attempts to incorporate TiO2 in calculation schemes for melt compressibility. The empirical relationship KV-4/3 for isostructural materials has been used to evaluate the compressibility-related structural changes occurring in these melts. The alkali metasilicate and disilicate melts are isostructural, independent of the cation. The addition of Ti to the metasilicate composition (i.e. X2TiSiO5), however, results in a series of melts which are not isostructural. The alkaline-earth metasilicate and disilicate compositions are not isostructural, but the addition of Ti to the metasilicate compositions (i.e. XTiSiO5) would appear, on the basis of modulus-volume systematics, to result in the melts becoming isostructural with respect to compressibility
Thermal Equation of State of Tantalum
We have investigated the thermal equation of state of tantalum from first
principles using the Linearized Augmented Plane Wave (LAPW) and pseudopotential
methods for pressures up to 300 GPa and temperatures up to 10000 K. The
equation of state at zero temperature was computed using LAPW. For finite
temperatures, mixed basis pseudopotential computations were performed for 54
atom supercells. The vibrational contributions were obtained by computing the
partition function using the particle in a cell model, and the the finite
temperature electronic free energy was obtained from the LAPW band structures.
We discuss the behavior of thermal equation of state parameters such as the
Gr\"uneisen parameter , , the thermal expansivity , the
Anderson-Gr\"uneisen parameter as functions of pressure and
temperature. The calculated Hugoniot shows excellent agreement with shock-wave
experiments. An electronic topological transition was found at approximately
200 GPa
New acoustic velocity measurements on CaOâMgOâAl 2 O 3 âSiO 2 liquids: Reevaluation of the volume and compressibility of CaMgSi 2 O 6 âCaAl 2 Si 2 O 8 liquids to 25 GPa
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95309/1/jgrb15318.pd
Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell
The high pressure and high temperature phase diagram of Ta has been studied
in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements
up to 52 GPa and 3800 K. The melting was observed at nine different pressures,
being the melting temperature in good agreement with previous laser-heated DAC
experiments, but in contradiction with several theoretical calculations and
previous piston-cylinder apparatus experiments. A small slope for the melting
curve of Ta is estimated (dTm/dP = 24 K/GPa at 1 bar) and a possible
explanation for this behaviour is given. Finally, a P-V-T equation of states is
obtained, being the temperature dependence of the thermal expansion coefficient
and the bulk modulus estimated.Comment: 31 pages, 8 figures, to appear in J.Phys.:Cond.Matte
- âŠ