348 research outputs found

    Conductivity and Atomic Structure of Isolated Multiwalled Carbon Nanotubes

    Full text link
    We report associated high resolution transmission electron microscopy (HRTEM) and transport measurements on a series of isolated multiwalled carbon nanotubes. HRTEM observations, by revealing relevant structural features of the tubes, shed some light on the variety of observed transport behaviors, from semiconducting to quasi-metallic type. Non Ohmic behavior is observed for certain samples which exhibit "bamboo like" structural defects. The resistance of the most conducting sample, measured down to 20 mK, exhibits a pronounced maximum at 0.6 K and strong positive magnetoresistance.Comment: 4 pages, 4 eps figure

    Magnetic field resistant quantum interferences in bismuth nanowires based Josephson junctions

    Full text link
    We investigate proximity induced superconductivity in micrometer-long bismuth nanowires con- nected to superconducting electrodes with a high critical field. At low temperature we measure a supercurrent that persists in magnetic fields as high as the critical field of the electrodes (above 11 T). The critical current is also strongly modulated by the magnetic field. In certain samples we find regular, rapid SQUID-like periodic oscillations occurring up to high fields. Other samples ex- hibit less periodic but full modulations of the critical current on Tesla field scales, with field-caused extinctions of the supercurrent. These findings indicate the existence of low dimensionally, phase coherent, interfering conducting regions through the samples, with a subtle interplay between orbital and spin contributions. We relate these surprising results to the electronic properties of the surface states of bismuth, strong Rashba spin-orbit coupling, large effective g factors, and their effect on the induced superconducting correlations.Comment: 5 page

    Very low shot noise in carbon nanotubes

    Full text link
    We have performed noise measurements on suspended ropes of single wall carbon nanotubes (SWNT) between 1 and 300 K for different values of dc current through the ropes. We find that the shot noise is suppressed by more than a factor 100 compared to the full shot noise 2eI. We have also measured an individual SWNT and found a level of noise which is smaller than the minimum expected. Another finding is the very low level of 1/f noise, which is significantly lower than previous observations. We propose two possible interpretations for this strong shot noise reduction: i) Transport within a rope takes place through a few nearly ballistic tubes within a rope and possibly involves non integer effective charges. ii) A substantial fraction of the tubes conduct with a strong reduction of effective charge (by more than a factor 50).Comment: Submitted to Eur. Phys. J. B (Jan. 2002) Higher resolution pictures are posted on http://www.lps.u-psud.fr/Collectif/gr_07/publications.htm

    0-π\pi quantum transition in a carbon nanotube Josephson junction: universal phase dependence and orbital degeneracy

    Full text link
    We investigate experimentally the supercurrent in a clean carbon nanotube quantum dot, close to orbital degeneracy, connected to superconducting leads in a regime of strong competition between local electronic correlations and superconducting proximity effect. For an odd occupancy of the dot and intermediate coupling to the reservoir, the Kondo effect can develop in the normal state and screen the local magnetic moment of the dot. This leads to singlet-doublet transitions that strongly affect the Josephson effect in a single-level quantum dot: the sign of the supercurrent changes from positive to negative (0 to π\pi-junction). In the regime of strongest competition between the Kondo effect and proximity effect, meaning that the Kondo temperature equals the superconducting gap, the magnetic state of the dot undergoes a first order quantum transition induced by the superconducting phase difference across the junction. This is revealed experimentally by anharmonic current-phase relations. In addition, the very specific electronic configuration of clean carbon nanotubes, with two nearly orbitally degenerated states, leads to different physics depending whether only one or both quasi-degenerate upper levels of the dots participate to transport, which is determined by their occupancy and relative widths. When the transport of Cooper pairs takes place through only one of these levels, we find that the phase diagram of the phase-dependent 0-π\pi transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case were two levels participate to transport, the nanotube Josephson current exhibits a continuous 0-π\pi transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.Comment: 14 pages, 12 figure

    Superconductivity in ropes of carbon nanotubes

    Get PDF
    Recent experimental and theoretical results on intrinsic superconductivity in ropes of single-wall carbon nanotubes are reviewed and compared. We find strong experimental evidence for superconductivity when the distance between the normal electrodes is large enough. This indicates the presence of attractive phonon-mediated interactions in carbon nanotubes, which can even overcome the repulsive Coulomb interactions. The effective low-energy theory of rope superconductivity explains the experimental results on the temperature-dependent resistance below the transition temperature in terms of quantum phase slips. Quantitative agreement with only one fit parameter can be obtained. Nanotube ropes thus represent superconductors in an extreme 1D limit never explored before.Comment: 19 pages, 9 figures, to appear in special issue of Sol. State Com
    corecore