1,108 research outputs found
The Carnot Cycle for Small Systems: Irreversibility and the Cost of Operations
We employ the recently developed framework of the energetics of stochastic
processes (called `stochastic energetics'), to re-analyze the Carnot cycle in
detail, taking account of fluctuations, without taking the thermodynamic limit.
We find that both processes of connection to and disconnection from heat
baths and adiabatic processes that cause distortion of the energy distribution
are sources of inevitable irreversibility within the cycle. Also, the so-called
null-recurrence property of the cumulative efficiency of energy conversion over
many cycles and the irreversible property of isolated, purely mechanical
processes under external `macroscopic' operations are discussed in relation to
the impossibility of a perpetual machine, or Maxwell's demon.Comment: 11 pages with 3 figures. Resubmitted to Physical Review E. Many
paragraphs have been modifie
Adiabatic invariance with first integrals of motion
The construction of a microthermodynamic formalism for isolated systems based
on the concept of adiabatic invariance is an old but seldom appreciated effort
in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33,
225 (1910)]. An apparently independent extension of such formalism for systems
bearing additional first integrals of motion was recently proposed by Hans H.
Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic
invariance even in such singular cases. After some remarks in connection with
the formalism pioneered by Hertz, it will be suggested that such an extension
can incidentally explain the success of a dynamical method for computing the
entropy of classical interacting fluids, at least in some potential
applications where the presence of additional first integrals cannot be
ignored.Comment: 2 pages, no figures (REVTeX 4
Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties
This paper reports on a new and swift hydrothermal chemical route to prepare
titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting
material. The synthesis approach uses a commercial solution of TiCl3 as
titanium source to prepare an amorphous precursor, circumventing the use of
hazardous chemical compounds. The influence of the reaction temperature and
dwell autoclave time on the structure and morphology of the synthesised
materials was studied. Homogeneous titanate nanotubes with a high
length/diameter aspect ratio were synthesised at 160^{\circ}C and 24 h. A band
gap of 3.06\pm0.03 eV was determined for the TNS samples prepared in these
experimental conditions. This value is red shifted by 0.14 eV compared to the
band gap value usually reported for the TiO2 anatase. Moreover, such samples
show better adsorption capacity and photocatalytic performance on the dye
rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98%
reduction of the R6G concentration was achieved after 45 minutes of irradiation
of a 10 ppm dye aqueous solution and 1 g/L of TNS catalyst.Comment: 29 pages, 10 figures, accepted for publication in Journal of
Materials Scienc
Relating the thermodynamic arrow of time to the causal arrow
Consider a Hamiltonian system that consists of a slow subsystem S and a fast
subsystem F. The autonomous dynamics of S is driven by an effective
Hamiltonian, but its thermodynamics is unexpected. We show that a well-defined
thermodynamic arrow of time (second law) emerges for S whenever there is a
well-defined causal arrow from S to F and the back-action is negligible. This
is because the back-action of F on S is described by a non-globally Hamiltonian
Born-Oppenheimer term that violates the Liouville theorem, and makes the second
law inapplicable to S. If S and F are mixing, under the causal arrow condition
they are described by microcanonic distributions P(S) and P(S|F). Their
structure supports a causal inference principle proposed recently in machine
learning.Comment: 10 page
Neutral-Current Atmospheric Neutrino Flux Measurement Using Neutrino-Proton Elastic Scattering in Super-Kamiokande
Recent results show that atmospheric oscillate with eV and , and that
conversion into is strongly disfavored. The Super-Kamiokande (SK)
collaboration, using a combination of three techniques, reports that their data
favor over . This distinction
is extremely important for both four-neutrino models and cosmology. We propose
that neutrino-proton elastic scattering () in water
\v{C}erenkov detectors can also distinguish between active and sterile
oscillations. This was not previously recognized as a useful channel since only
about 2% of struck protons are above the \v{C}erenkov threshold. Nevertheless,
in the present SK data there should be about 40 identifiable events. We show
that these events have unique particle identification characteristics, point in
the direction of the incoming neutrinos, and correspond to a narrow range of
neutrino energies (1-3 GeV, oscillating near the horizon). This channel will be
particularly important in Hyper-Kamiokande, with times higher rate.
Our results have other important applications. First, for a similarly small
fraction of atmospheric neutrino quasielastic events, the proton is
relativistic. This uniquely selects (not ) events,
useful for understanding matter effects, and allows determination of the
neutrino energy and direction, useful for the dependence of oscillations.
Second, using accelerator neutrinos, both elastic and quasielastic events with
relativistic protons can be seen in the K2K 1-kton near detector and MiniBooNE.Comment: 10 pages RevTeX, 8 figure
Novel Methodology for Creating Macaque Retinas with Sortable Photoreceptors and Ganglion Cells
Purpose: The ability to generate macaque retinas with sortable cell populations would be of great benefit to both basic and translational studies of the primate retina. The purpose of our study was therefore to develop methods to achieve this goal by selectively labeling, in life, photoreceptors (PRs) and retinal ganglion cells (RGCs) with separate fluorescent markers. Methods: Labeling of macaque (Macaca fascicularis) PRs and RGCs was accomplished by subretinal delivery of AAV5-hGRK1-GFP, and retrograde transport of micro-ruby™ from the lateral geniculate nucleus, respectively. Retinas were anatomically separated into different regions. Dissociation conditions were optimized, and cells from each region underwent fluorescent activated cell sorting (FACS). Expression of retinal cell type- specific genes was assessed by quantitative real-time PCR to characterize isolated cell populations. Results: We show that macaque PRs and RGCs can be simultaneously labeled in-life and enriched populations isolated by FACS. Recovery from different retinal regions indicated efficient isolation/enrichment for PRs and RGCs, with the macula being particularly amendable to this technique. Conclusions: The methods and materials presented here allow for the identification of novel reagents designed to target retinal ganglion cells and/or photoreceptors in a species that is phylogenetically and anatomically similar to human. These techniques will enable screening of intravitreally- delivered AAV capsid libraries for variants with increased tropism for PRs and/or RGCs and the evaluation of vector tropism and/or cellular promoter activity of gene therapy vectors in a clinically relevant species
Recommended from our members
SMART-1 Impact Ground-based campaign
Based on predictions of impact magnitude and cloud ejecta dynamics, we organized a SMART-1 ground-based observation campaign to perform coordinated measurements of the impact. Results from the coordinated multi-site campaign will be discussed
Evidence for oscillation of atmospheric neutrinos
We present an analysis of atmospheric neutrino data from a 33.0 kiloton-year
(535-day) exposure of the Super-Kamiokande detector. The data exhibit a zenith
angle dependent deficit of muon neutrinos which is inconsistent with
expectations based on calculations of the atmospheric neutrino flux.
Experimental biases and uncertainties in the prediction of neutrino fluxes and
cross sections are unable to explain our observation. The data are consistent,
however, with two-flavor nu_mu nu_tau oscillations with sin^2(2theta)>0.82
and 5x10^-4 < delta m^2 < 6x10^-3 eV^2 at 90% confidence level.Comment: 9 pages (two-column) with 4 figures. Small corrections to Eqn.4 and
Fig.3. Final version to appear in PR
Calibration of Super-Kamiokande Using an Electron Linac
In order to calibrate the Super-Kamiokande experiment for solar neutrino
measurements, a linear accelerator (LINAC) for electrons was installed at the
detector. LINAC data were taken at various positions in the detector volume,
tracking the detector response in the variables relevant to solar neutrino
analysis. In particular, the absolute energy scale is now known with less than
1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM
- …
