44 research outputs found

    Impact of minimal residual disease detection by next-generation flow cytometry in multiple myeloma patients with sustained complete remission after frontline therapy

    Get PDF
    Minimal residual disease (MRD) was monitored in 52 patients with sustained CR (≥2 years) after frontline therapy using next-generation flow (NGF) cytometry. 25% of patients initially MRD- reversed to MRD+. 56% of patients in sustained CR were MRD+; 45% at the level of 10−5; 17% at 10−6. All patients who relapsed during follow-up were MRD+ at the latest MRD assessment, including those with ultra-low tumor burden. MRD persistence was associated with specific phenotypic profiles: higher erythroblasts’ and tumor-associated monocytes/macrophages’ predominance in the bone marrow niche. NGF emerges as a suitable method for periodic, reproducible, highly-sensitive MRD-detection at the level of 10−6

    BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc

    Get PDF
    SummaryMYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.PaperFlic

    International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM)

    Get PDF
    Smoldering multiple myeloma (SMM) is an asymptomatic precursor state of multiple myeloma (MM). Recently, MM was redefined to include biomarkers predicting a high risk of progression from SMM, thus necessitating a redefinition of SMM and its risk stratification. We assembled a large cohort of SMM patients meeting the revised IMWG criteria to develop a new risk stratification system. We included 1996 patients, and using stepwise selection and multivariable analysis, we identified three independent factors predicting progression risk at 2 years: serum M-protein >2 g/dL (HR: 2.1), involved to uninvolved free light-chain ratio >20 (HR: 2.7), and marrow plasma cell infiltration >20% (HR: 2.4). This translates into 3 categories with increasing 2-year progression risk: 6% for low risk (38%; no risk factors, HR: 1); 18% for intermediate risk (33%; 1 factor; HR: 3.0), and 44% for high risk (29%; 2–3 factors). Addition of cytogenetic abnormalities (t(4;14), t(14;16), +1q, and/or del13q) allowed separation into 4 groups (low risk with 0, low intermediate risk with 1, intermediate risk with 2, and high risk with ≥3 risk factors) with 6, 23, 46, and 63% risk of progression in 2 years, respectively. The 2/20/20 risk stratification model can be easily implemented to identify high-risk SMM for clinical research and routine practice and will be widely applicable

    Molecular responses to therapeutic proteasome inhibitors in multiple myeloma patients are donor-, cell type-and drug-dependent

    No full text
    Proteasome is central to proteostasis network functionality and its overactivation represents a hallmark of advanced tumors; thus, its selective inhibition provides a strategy for the development of novel antitumor therapies. In support, proteasome inhibitors, e.g. Bortezomib or Carfilzomib have demonstrated clinical efficacy against hematological cancers. Herein, we studied proteasome regulation in peripheral blood mononuclear cells and erythrocytes isolated from healthy donors or from Multiple Myeloma patients treated with Bortezomib or Carfilzomib. In healthy donors we found that peripheral blood mononuclear cells express higher, as compared to erythrocytes, basal proteasome activities, as well as that proteasome activities decline during aging. Studies in cells isolated from Multiple Myeloma patients treated with proteasome inhibitors revealed that in most (but, interestingly enough, not all) patients, proteasome activities decline in both cell types during therapy. In peripheral blood mononuclear cells, most proteostatic genes expression patterns showed a positive correlation during therapy indicating that proteostasis network modules likely respond to proteasome inhibition as a functional unit. Finally, the expression levels of antioxidant, chaperone and aggresomes removal/autophagy genes were found to inversely associate with patients' survival. Our studies will support a more personalized therapeutic approach in hematological malignancies treated with proteasome inhibitors. © Papanagnou et al

    Ex vivo models simulating the bone marrow environment and predicting response to therapy in multiple myeloma

    No full text
    Multiple myeloma (MM) remains incurable despite the abundance of novel drugs. As it has been previously shown, preclinical 2D models fail to predict disease progression due to their inability to simulate the microenvironment of the bone marrow. In this review, we focus on 3D models and present all currently available ex vivo MM models that fulfil certain criteria, such as development of complex 3D environments using patients’ cells and ability to test different drugs in order to assess personalized MM treatment efficacy of various regimens and combinations. We selected models representing the top-notch ex vivo platforms and evaluated them in terms of cost, time-span, and feasibility of the method. Finally, we propose where such a model can be more informative in a patient’s treatment timeline. Overall, advanced 3D preclinical models are very promising as they may eventually offer the opportunity to precisely select the optimal personalized treatment for each MM patient

    Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications

    No full text
    Background: Gaining further insights into SARS-CoV-2 routes of infection and the underlying pathobiology of COVID-19 will support the design of rational treatments targeting the life cycle of the virus and/or the adverse effects (e.g., multi-organ collapse) that are triggered by COVID-19-mediated adult respiratory distress syndrome (ARDS) and/or other pathologies. Main body: COVID-19 is a two-phase disease being marked by (phase 1) increased virus transmission and infection rates due to the wide expression of the main infection-related ACE2, TMPRSS2 and CTSB/L human genes in tissues of the respiratory and gastrointestinal tract, as well as by (phase 2) host- and probably sex- and/or age-specific uncontrolled inflammatory immune responses which drive hyper-cytokinemia, aggressive inflammation and (due to broad organotropism of SARS-CoV-2) collateral tissue damage and systemic failure likely because of imbalanced ACE/ANGII/AT1R and ACE2/ANG(1–7)/MASR axes signaling. Conclusion: Here we discuss SARS-CoV-2 life cycle and a number of approaches aiming to suppress viral infection rates or propagation; increase virus antigen presentation in order to activate a robust and durable adaptive immune response from the host, and/or mitigate the ARDS-related “cytokine storm” and collateral tissue damage that triggers the severe life-threatening complications of COVID-19. © 2021, The Author(s)

    The Cytogenetic Profile of Primary and Secondary Plasma Cell Leukemia: Etiopathogenetic Perspectives, Prognostic Impact and Clinical Relevance to Newly Diagnosed Multiple Myeloma with Differential Circulating Clonal Plasma Cells

    No full text
    Plasma cell leukemia (PCL) is a rare and aggressive plasma cell dyscrasia that may appear as de-novo leukemia (pPCL) or on the basis of a pre-existing multiple myeloma (MM), called secondary plasma cell leukemia (sPCL). In this prospective study, we have applied a broad panel of FISH probes in 965 newly diagnosed MM (NDMM) and 44 PCL cases of both types to reveal the particular cytogenetic differences among the three plasma cell dyscrasias. In order to evaluate the frequency and patterns of clonal evolution, the same FISH panel was applied both at diagnosis and at the time of first relapse for 81 relapsed MM patients and both at MM diagnosis and during sPCL transformation for the 19 sPCL cases described here. pPCL was characterized by frequent MYC translocations and t(11;14) with a 11q13 breakpoint centered on the MYEOV gene, not commonly seen in MM. sPCL had a higher number of FISH abnormalities and was strongly associated with the presence of del(17p13), either acquired at the initial MM stage or as a newly acquired lesion upon leukemogenesis in the context of the apparent clonal evolution observed in sPCL. In clinical terms, sPCL showed a shorter overall survival than pPCL with either standard or high-risk (t(4;14) and/or t(14;16) and/or del(17p13) and/or ≥3 concomitant aberrations) abnormalities (median 5 months vs. 21 and 11 months respectively, p < 0.001), suggesting a prognostic stratification based on cytogenetic background. These observations proved relevant in the NDMM setting, where higher levels of circulating plasma cells (CPCs) were strongly associated with high-risk cytogenetics (median frequency of CPCs: 0.11% of peripheral blood nucleated cells for high-risk vs. 0.007% for standard-risk NDMM, p < 0.0001). Most importantly, the combined evaluation of CPCs (higher or lower than a cut-off of 0.03%), together with patients’ cytogenetic status, could be used for an improved prognostic stratification of NDMM patients
    corecore