191 research outputs found

    Adding 5-hydroxytryptamine receptor type 3 antagonists may reduce drug-induced nausea in poor insight obsessive-compulsive patients taking off-label doses of selective serotonin reuptake inhibitors: a 52-week follow-up case report

    Get PDF
    Poor-insight obsessive-compulsive disorder (PI-OCD) is a severe form of OCD where the 'typically obsessive' features of intrusive, 'egodystonic' feelings and thoughts are absent. PI-OCD is difficult to treat, often requiring very high doses of serotonergic drugs as well as antipsychotic augmentation. When this occurs, unpleasant side effects as nausea are common, eventually further reducing compliance to medication and increasing the need for pharmacological alternatives. We present the case of a PI-OCD patient who developed severe nausea after response to off-label doses of the selective serotonin reuptake inhibitor (SSRI), fluoxetine. Drug choices are discussed, providing pharmacodynamic rationales and hypotheses along with reports of rating scale scores, administered within a follow-up period of 52 weeks. A slight reduction of fluoxetine dose, augmentation with mirtazapine and a switch from amisulpride to olanzapine led to resolution of nausea while preserving the anti-OCD therapeutic effect. Mirtazapine and olanzapine have already been suggested for OCD treatment, although a lack of evidence exists about their role in the course of PI-OCD. Both mirtazapine and olanzapine also act as 5-hydroxytryptamine receptor type 3 (5-HT3) blockers, making them preferred choices especially in cases of drug-induced nausea

    "It doesn't do any harm, but patients feel better": a qualitative exploratory study on gastroenterologists' perspectives on the role of antidepressants in inflammatory bowel disease

    Get PDF
    Background: Interest in psychological factors in patients with inflammatory bowel disease (IBD) has increased in recent years. It has even been proposed that treating psychological co-morbidities with antidepressants may control disease activity and improve quality of life. Despite this, there is no data on gastroenterologists' attitudes to, and experiences with, antidepressant therapy in patients with IBD. Methods: We conducted semi-structured interviews with 18 gastroenterologists associated with metropolitan teaching hospitals. Qualitative content analysis was used to examine their responses. Results: Seventy-eight percent of gastroenterologists had treated IBD patients with antidepressants for pain, depression and/or anxiety, and insomnia. Antidepressants were reported to be useful in improving psychosocial well-being, quality of life, and self-management of the disease by patients. However, in this group of gastroenterologists, there appears to be skepticism towards psychological disorders themselves or antidepressant therapy having a central role in either the causation of IBD or its clinical course. Nevertheless, these gastroenterologists were receptive to the idea of conducting a trial of the role of antidepressants in IBD. Conclusion: While the majority of specialists have treated IBD patients with antidepressants, there is considerable skepticism with regard to efficacy of antidepressive therapy or the role of psychological factors in the outcome of IBD patients.Antonina A Mikocka-Walus, Deborah A Turnbull, Nicole T Moulding, Ian G Wilson, Jane M Andrews and Gerald J Holtman

    A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition

    Get PDF
    Auranofin is a gold(I)-containing drug in clinical use as an antiarthritic agent. Recent studies showed that auranofin manifests interesting antiparasitic actions very likely arising from inhibition of parasitic enzymes involved in the control of the redox metabolism. Trypanothione reductase is a key enzyme of Leishmania infantum polyamine-dependent redox metabolism, and a validated target for antileishmanial drugs. As trypanothione reductase contains a dithiol motif at its active site and gold(I) compounds are known to be highly thiophilic, we explored whether auranofin might behave as an effective enzyme inhibitor and as a potential antileishmanial agent. Notably, enzymatic assays revealed that auranofin causes indeed a pronounced enzyme inhibition. To gain a deeper insight into the molecular basis of enzyme inhibition, crystals of the auranofin-bound enzyme, in the presence of NADPH, were prepared, and the X-ray crystal structure of the auranofin–trypanothione reductase–NADPH complex was solved at 3.5 Å resolution. In spite of the rather low resolution, these data were of sufficient quality as to identify the presence of the gold center and of the thiosugar of auranofin, and to locate them within the overall protein structure. Gold binds to the two active site cysteine residues of TR, i.e. Cys52 and Cys57, while the thiosugar moiety of auranofin binds to the trypanothione binding site; thus auranofin appears to inhibit TR through a dual mechanism. Auranofin kills the promastigote stage of L. infantum at micromolar concentration; these findings will contribute to the design of new drugs against leishmaniasis

    A novel therapeutic approach: Blocking Glioblastoma cells’ interaction with their microenvironment

    Get PDF
    Abstract Due to the highly invasive nature of Glioblastoma (GB), complete surgical resection is not feasible, while motile tumour cells are often associated with several specific brain structures that enhance treatment-resistance. Here, we investigate the therapeutic potential of Disulfiram and Carbenoxolone, that inhibit two distinct interactions between GB and the brain tissue microenvironment: stress-induced cell-matrix adhesion and gap junction mediated cell-cell communication, respectively. Increase in cell numbers of tumour-initiating cells, which are cultured in suspension as cell clusters, and adherent differentiated cells can be blocked to a similar extent by Carbenoxolone, as both cell populations form gap junctions, but the adherent differentiated cells are much more sensitive to Disulfiram treatment, which – via modulation of NF-ÎșB signalling – interferes with cell-substrate adhesion. Interestingly, inducing adhesion in tumour-initiating cells without differentiating them does not sensitize for Disulfiram. Importantly, combining Disulfiram, Carbenoxolone and the standard chemotherapeutic drug Temozolomide reduces tumour size in an orthotopic mouse model. Isolating GB cells from their direct environment within the brain represents an important addition to current therapeutic approaches. The blockage of cellular interactions via the clinically relevant substances Disulfiram and Carbenoxolone, has distinct effects on different cell populations within a tumour, potentially reducing motility and/or resistance to apoptosis

    Probing the action of a novel anti-leukaemic drug therapy at the single cell level using modern vibrational spectroscopy techniques

    Get PDF
    Acute myeloid leukaemia (AML) is a life threatening cancer for which there is an urgent clinical need for novel therapeutic approaches. A redeployed drug combination of bezafibrate and medroxyprogesterone acetate (BaP) has shown anti-leukaemic activity in vitro and in vivo. Elucidation of the BaP mechanism of action is required in order to understand how to maximise the clinical benefit. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Synchrotron radiation FTIR (S-FTIR) and Raman microspectroscopy are powerful complementary techniques which were employed to probe the biochemical composition of two AML cell lines in the presence and absence of BaP. Analysis was performed on single living cells along with dehydrated and fixed cells to provide a large and detailed data set. A consideration of the main spectral differences in conjunction with multivariate statistical analysis reveals a significant change to the cellular lipid composition with drug treatment; furthermore, this response is not caused by cell apoptosis. No change to the DNA of either cell line was observed suggesting this combination therapy primarily targets lipid biosynthesis or effects bioactive lipids that activate specific signalling pathways

    TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms

    Get PDF
    The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFÎșB-mediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFÎșB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival

    Tumour-derived CSF2/granulocyte macrophage colony stimulating factor controls myeloid cell accumulation and progression of gliomas

    Get PDF
    BACKGROUND: Malignant tumours release factors, which attract myeloid cells and induce their polarisation to pro-invasive, immunosuppressive phenotypes. Brain-resident microglia and peripheral macrophages accumulate in the tumour microenvironment of glioblastoma (GBM) and induce immunosuppression fostering tumour progression. Macrophage colony stimulating factors (CSFs) control the recruitment of myeloid cells during peripheral cancer progression, but it is disputable, which CSFs drive their accumulation in gliomas. METHODS: The expression of CSF2 (encoding granulocyte-macrophage colony stimulating factor) was determined in TCGA datasets and five human glioma cell lines. Effects of stable CSF2 knockdown in glioma cells or neutralising CSF2 or receptor CSF2Rα antibodies on glioma invasion were tested in vitro and in vivo. RESULTS: CSF2 knockdown or blockade of its signalling reduced microglia-dependent glioma invasion in microglia-glioma co-cultures. CSF2-deficient human glioma cells encapsulated in cell-impermeable hollow fibres and transplanted to mouse brains, failed to attract microglia, but stimulated astrocyte recruitment. CSF2-depleted gliomas were smaller, attracted less microglia and macrophages, and provided survival benefit in tumour-bearing mice. Apoptotic microglia/macrophages were detected in CSF2-depleted tumours. CONCLUSIONS: CSF2 is overexpressed in a subset of mesenchymal GBMs in association with high immune gene expression. Tumour-derived CSF2 attracts, supports survival and induces pro-tumorigenic polarisation of microglia and macrophages

    Disulfiram modulated ROS–MAPK and NFÎșB pathways and targeted breast cancer cells with cancer stem cell-like properties

    Get PDF
    BACKGROUND: Previous studies indicate that disulfiram (DS), an anti-alcoholism drug, is cytotoxic to cancer cell lines and reverses anticancer drug resistance. Cancer stem cells (CSCs) are the major cause of chemoresistance leading to the failure of cancer chemotherapy. This study intended to examine the effect of DS on breast cancer stem cells (BCSCs). METHODS: The effect of DS on BC cell lines and BCSCs was determined by MTT, western blot, CSCs culture and CSCs marker analysis. RESULTS: Disulfiram was highly toxic to BC cell lines in vitro in a copper (Cu)-dependent manner. In Cu-containing medium (1 mu M), the IC50 concentrations of DS in BC cell lines were 200-500 nM. Disulfiram/copper significantly enhanced (3.7-15.5-fold) cytotoxicity of paclitaxel (PAC). Combination index isobologram analysis demonstrated a synergistic effect between DS/Cu and PAC. The increased Bax and Bcl2 protein expression ratio indicated that intrinsic apoptotic pathway may be involved in DS/Cu-induced apoptosis. Clonogenic assay showed DS/Cu-inhibited clonogenicity of BC cells. Mammosphere formation and the ALDH1(+VE) and CD24(Low)/CD44(High) CSCs population in mammospheres were significantly inhibited by exposure to DS/Cu for 24 h. Disulfiram/copper induced reactive oxygen species (ROS) generation and activated its downstream apoptosis-related cJun N-terminal kinase and p38 MAPK pathways. Meanwhile, the constitutive NF kappa B activity in BC cell lines was inhibited by DS/Cu. CONCLUSION: Disulfiram/copper inhibited BCSCs and enhanced cytotoxicity of PAC in BC cell lines. This may be caused by simultaneous induction of ROS and inhibition of NF kappa B. British Journal of Cancer (2011) 104, 1564-1574. doi: 10.1038/bjc.2011.126 www.bjcancer.com Published online 12 April 2011 (C) 2011 Cancer Research U
    • 

    corecore