8 research outputs found

    Water T2 as an early, global and practical biomarker for metabolic syndrome: an observational cross-sectional study

    Get PDF
    Background: Metabolic syndrome (MetS) is a highly prevalent condition that identifies individuals at risk for type 2 diabetes mellitus and atherosclerotic cardiovascular disease. Prevention of these diseases relies on early detection and intervention in order to preserve pancreatic β-cells and arterial wall integrity. Yet, the clinical criteria for MetS are insensitive to the early-stage insulin resistance, inflammation, cholesterol and clotting factor abnormalities that char- acterize the progression toward type 2 diabetes and atherosclerosis. Here we report the discovery and initial charac- terization of an atypical new biomarker that detects these early conditions with just one measurement. Methods: Water T2, measured in a few minutes using benchtop nuclear magnetic resonance relaxometry, is exqui- sitely sensitive to metabolic shifts in the blood proteome. In an observational cross-sectional study of 72 non-diabetic human subjects, the association of plasma and serum water T2 values with over 130 blood biomarkers was analyzed using bivariate, multivariate and logistic regression. Results: Plasma and serum water T2 exhibited strong bivariate correlations with markers of insulin, lipids, inflamma- tion, coagulation and electrolyte balance. After correcting for confounders, low water T2 values were independently and additively associated with fasting hyperinsulinemia, dyslipidemia and subclinical inflammation. Plasma water T2 exhibited 100% sensitivity and 87% specificity for detecting early insulin resistance in normoglycemic subjects, as defined by the McAuley Index. Sixteen normoglycemic subjects with early metabolic abnormalities (22% of the study population) were identified by low water T2 values. Thirteen of the 16 did not meet the harmonized clinical criteria for metabolic syndrome and would have been missed by conventional screening for diabetes risk. Low water T2 values were associated with increases in the mean concentrations of 6 of the 16 most abundant acute phase proteins and lipoproteins in plasma. Conclusions: Water T2 detects a constellation of early abnormalities associated with metabolic syndrome, provid- ing a global view of an individual’s metabolic health. It circumvents the pitfalls associated with fasting glucose and hemoglobin A1c and the limitations of the current clinical criteria for metabolic syndrome. Water T2 shows promise as an early, global and practical screening tool for the identification of individuals at risk for diabetes and atherosclerosis

    The HITRAN2020 molecular spectroscopic database

    Get PDF
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    Abdominal obesity and low physical activity are associated with insulin resistance in overweight adolescents: a cross-sectional study

    Get PDF
    ABSTRACT: Background: Previous studies have assessed the metabolic changes and lifestyles associated with overweight adolescents. However, these associations are unclear amongst overweight adolescents who have already developed insulin resistance. This study assessed the associations between insulin resistance and anthropometric, metabolic, inflammatory, food consumption, and physical activity variables amongst overweight adolescents. Methods: This cross-sectional study divided adolescents (n = 120) between 10 and 18 years old into 3 groups: an overweight group with insulin resistance (O + IR), an overweight group without insulin resistance (O-IR), and a normal-weight control group (NW). Adolescents were matched across groups based on age, sex, pubertal maturation, and socioeconomic strata. Anthropometric, biochemical, physical activity, and food consumption variables were assessed. Insulin resistance was assessed using homeostatic model assessment (HOMA Calculator Version 2.2.2 from ©Diabetes Trials Unit, University of Oxford), and overweight status was assessed using body mass index according to World Health Organization (2007) references. A chi-square test was used to compare categorical variables. ANOVAs or Kruskal-Wallis tests were used for continuous variables. Multiple linear regression models were used to calculate the probability of the occurrence of insulin resistance based on the independent variables. Results: The risk of insulin resistance amongst overweight adolescents increases significantly when they reach a waist circumference > p95 (OR = 1.9, CIs = 1.3-2.7, p = 0.013) and watch 3 or more hours/day of television (OR = 1.7, CIs = 0.98-2.8, p = 0.033). Overweight status and insulin resistance were associated with higher levels of inflammation (hsCRP ≥1 mg/L) and cardiovascular risk according to arterial indices. With each cm increase in waist circumference, the HOMA index increased by 0.082; with each metabolic equivalent (MET) unit increase in physical activity, the HOMA index decreased by 0.026. Conclusions: Sedentary behaviour and a waist circumference > p90 amongst overweight adolescents were associated with insulin resistance, lipid profile alterations, and higher inflammatory states. A screening that includes body mass index, in waist circumference, and physical activity evaluations of adolescents might enable the early detection of these alterations

    Corticosterone oscillations during mania induction in the lateral hypothalamic kindled rat—Experimental observations and mathematical modeling

    No full text
    corecore