1,420 research outputs found
Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation
In cardiac magnetic resonance imaging, fully-automatic segmentation of the
heart enables precise structural and functional measurements to be taken, e.g.
from short-axis MR images of the left-ventricle. In this work we propose a
recurrent fully-convolutional network (RFCN) that learns image representations
from the full stack of 2D slices and has the ability to leverage inter-slice
spatial dependences through internal memory units. RFCN combines anatomical
detection and segmentation into a single architecture that is trained
end-to-end thus significantly reducing computational time, simplifying the
segmentation pipeline, and potentially enabling real-time applications. We
report on an investigation of RFCN using two datasets, including the publicly
available MICCAI 2009 Challenge dataset. Comparisons have been carried out
between fully convolutional networks and deep restricted Boltzmann machines,
including a recurrent version that leverages inter-slice spatial correlation.
Our studies suggest that RFCN produces state-of-the-art results and can
substantially improve the delineation of contours near the apex of the heart.Comment: MICCAI Workshop RAMBO 201
A comparative evaluation of interactive segmentation algorithms
In this paper we present a comparative evaluation of four popular interactive segmentation algorithms. The evaluation was carried out as a series of user-experiments, in which participants were tasked with extracting 100 objects from a common dataset: 25 with each algorithm, constrained within a time limit of 2 min for each object. To facilitate the experiments, a “scribble-driven” segmentation tool was developed to enable interactive image segmentation by simply marking areas of foreground and background with the mouse. As the participants refined and improved their respective segmentations, the corresponding updated segmentation mask was stored along with the elapsed time. We then collected and evaluated each recorded mask against a manually segmented ground truth, thus allowing us to gauge segmentation accuracy over time. Two benchmarks were used for the evaluation: the well-known Jaccard index for measuring object accuracy, and a new fuzzy metric, proposed in this paper, designed for measuring boundary accuracy. Analysis of the experimental results demonstrates the effectiveness of the suggested measures and provides valuable insights into the performance and characteristics of the evaluated algorithms
Mosaic DNA imports with interspersions of recipient sequence after natural transformation of Helicobacter pylori
Helicobacter pylori colonizes the gastric mucosa of half of the human population, causing gastritis, ulcers, and cancer. H. pylori
is naturally competent for transformation by exogenous DNA, and recombination during mixed infections of one stomach
with multiple H. pylori strains generates extensive allelic diversity. We developed an in vitro transformation protocol to study
genomic imports after natural transformation of H. pylori. The mean length of imported fragments was dependent on the
combination of donor and recipient strain and varied between 1294 bp and 3853 bp. In about 10% of recombinant clones, the
imported fragments of donor DNA were interrupted by short interspersed sequences of the recipient (ISR) with a mean length
of 82 bp. 18 candidate genes were inactivated in order to identify genes involved in the control of import length and
generation of ISR. Inactivation of the antimutator glycosylase MutY increased the length of imports, but did not have a
significant effect on ISR frequency. Overexpression of mutY strongly increased the frequency of ISR, indicating that MutY, while
not indispensable for ISR formation, is part of at least one ISR-generating pathway. The formation of ISR in H. pylori increases
allelic diversity, and contributes to the uniquely low linkage disequilibrium characteristic of this pathogen
Evidence for the Decay
We present a search for the ``wrong-sign'' decay D0 -> K+ pi- pi+ pi- using 9
fb-1 of e+e- collisions on and just below the Upsilon(4S) resonance. This decay
can occur either through a doubly Cabibbo-suppressed process or through mixing
to a D0bar followed by a Cabibbo-favored process. Our result for the
time-integrated wrong-sign rate relative to the decay D0 -> K- pi+ pi- pi+ is
(0.0041 +0.0012-0.0011(stat.) +-0.0004(syst.))x(1.07 +-0.10)(phase space),
which has a statistical significance of 3.9 standard deviations.Comment: 9 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Hadronic Mass Moments in Inclusive Semileptonic B Meson Decays
We have measured the first and second moments of the hadronic mass-squared
distribution in B -> X_c l nu, for P(lepton) > 1.5 GeV/c. We find <M_X^2 -
M_D[Bar]^2> = 0.251 +- 0.066 GeV^2, )^2 > = 0.576 +- 0.170
GeV^4, where M_D[Bar] is the spin-averaged D meson mass.
From that first moment and the first moment of the photon energy spectrum in
b -> s gamma, we find the HQET parameter lambda_1 (MS[Bar], to order 1/M^3 and
beta_0 alpha_s^2) to be -0.24 +- 0.11 GeV^2. Using these first moments and the
B semileptonic width, and assuming parton-hadron duality, we obtain |V_cb| =
0.0404 +- 0.0013.Comment: 11 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Observation of the Charmed Baryon at CLEO
The CLEO experiment at the CESR collider has used 13.7 fb of data to
search for the production of the (css-ground state) in
collisions at {\rm GeV}. The modes used to
study the are ,
, , , and
. We observe a signal of 40.49.0(stat) events
at a mass of 2694.62.6(stat)1.9(syst) {\rm MeV/}, for all modes
combined.Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Observation of and
We have studied two-body charmless hadronic decays of mesons into the
final states phi K and phi K^*. Using 9.7 million pairs collected
with the CLEO II detector, we observe the decays B- -> phi K- and B0 -> phi K*0
with the following branching fractions: BR(B- -> phi K-)=(5.5 +2.1-1.8 +- 0.6)
x 10^{-6} and BR(B0 -> phi K*0)=(11.5 +4.5-3.7 +1.8-1.7) x 10^{-6}. We also see
evidence for the decays B0 -> phi K0 and B- -> phi K*-. However, since the
statistical significance is not overwhelming for these modes we determine upper
limits of <12.3 x 10^{-6} and <22.5 x 10^{-6} (90% C.L.) respectively.Comment: 9 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Evidence of New States Decaying into
Using 13.7 of data recorded by the CLEO detector at CESR, we report
evidence for two new charmed baryons: one decaying into
with the subsequent decay , and its
isospin partner decaying into followed by
. We measure the following mass differences
for the two states: =318.2+-1.3+-2.9 MeV,
and =324.0+-1.3+-3.0 MeV. We interpret
these new states as the particles, the charmed-strange
analogs of the .Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
First Observation of B -> D(*) rho', rho' -> omega pi-
We report on the observation of B-> D(*) pi+ pi- pi- pi^o decays. The
branching ratios for D*+ and D*o are (1.72+/-0.14+/-0.24)% and
(1.80+/-0.24+/-0.27)%, respectively. Each final state has a D* omega pi-
component, with branching ratios (0.29+/-0.03+/-0.04)% and
(0.45+/-0.10+/-0.07)% for the D*+ and D*o modes, respectively. We also observe
B -> D omega pi- decays. The branching ratios for D+ and Do are
(0.28+/-0.05+/-0.04)% and (0.41+/-0.07+/-0.06)%, respectively. A spin parity
analysis of the D omega pi- final state prefers a wide 1^- resonance. A fit to
the omega pi- mass spectrum finds a central mass of (1349+/-25^{+10}_{-5}) MeV
and width of (547+/-86^{+46}_{-45}) MeV. We identify this object as the
rho(1450) or the \rho'.Comment: 42 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, To Appear in PR
- …