26 research outputs found

    A novel method for the absolute fluorescence yield measurement by AIRFLY

    Get PDF
    One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to measure the absolute fluorescence yield induced by electrons in air to better than 10% precision. We introduce a new technique for measurement of the absolute fluorescence yield of the 337 nm line that has the advantage of reducing the systematic uncertainty due to the detector calibration. The principle is to compare the measured fluorescence yield to a well known process - the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA with 14 MeV electrons have also shown that this technique can be applied at lower energies.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid, Spain, 16 - 20 September 200

    Temperature and Humidity Dependence of Air Fluorescence Yield measured by AIRFLY

    Get PDF
    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6 nm, 337.1 nm, 353.7 nm and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20%) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid, Spain, 16 - 20 September 2007, to appear in Nuclear Instruments and Methods

    Measurement of the pressure dependence of air fluorescence emission induced by electrons

    Get PDF
    Contains fulltext : 34503.pdf (preprint version ) (Open Access)The fluorescence detection of ultra high energy (≳1e18 eV) cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules, which are excited by the cosmic ray shower particles along their path in the atmosphere. We have made a precise measurement of the fluorescence light spectrum excited by MeV electrons in dry air. We measured the relative intensities of 34 fluorescence bands in the wavelength range from 284 to 429 nm with a high resolution spectrograph. The pressure dependence of the fluorescence spectrum was also measured from a few hPa up to atmospheric pressure. Relative intensities and collisional quenching reference pressures for bands due to transitions from a common upper level were found in agreement with theoretical expectations. The presence of argon in air was found to have a negligible effect on the fluorescence yield. We estimated that the systematic uncertainty on the cosmic ray shower energy due to the pressure dependence of the fluorescence spectrum is reduced to a level of 1% by the AIRFLY results presented in this paper

    Dependence of proton beam polarization on ion source transition configurations

    No full text
    The polarization of extracted SATURNE II proton beam as a function of different ion source configurations was studied. Two distinct experiments were necessary for this purpose. In the first one, the LEFT-RIGHT instrumental asymmetry of the beam polarimeter was determined using an unpolarized beam. In the second one this correction factor was applied to asymmetries measured with the beam from the polarized ion source in all polarization states. The measurements were carried out at the proton beam kinetic energy 0.80 GeV, where the pp-elastic scattering analyzing power is near its maximum. The results confirmed that the two so-called “unpolarized states” of the source were polarized to several percent, whereas the absolute values of the beam polarizations in the so-called “polarized states” were equal and opposite. It was observed that the hexapole lens of the ion source produced beam polarization in the absence of any transition. The beam polarization as a function of hexapole current, transition field attenuation, and spin rotation solenoid current was measured. It was also shown how to obtain a strictly unpolarized beam using the polarized source only. The results obtained with the SATURNE II ion source HYPERION may also be relevant to similar sources at other accelerators
    corecore