46 research outputs found

    The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams

    Get PDF
    AbstractIntense laser-beam interactions with preformed plasma, preceding the laser-target interactions, significantly influence both the ion and X-ray generation. It is due to the laser pulse (its total length, the shape of the front edge, its background, the contrast, the radial homogeneity) as well as plasma (density, temperature) properties. Generation of the super fast (FF) ion groups is connected with a presence of non-linear processes. Saturated maximum of the charge states (independently on the laser intensity) is ascribed to the constant limit radius of the self-focused laser beam. Its longitudinal structure is considered as a possible explanation for the course of some experimental dependencies obtained

    A method for the determination of spatial electron density distribution in great Plasma-Focus devices

    No full text
    Determination of the electron density of plasma generated in a great plasma-focus device by means of interferometry is very difficult or sometimes impossible. In order to determine spatial electron density distributions of plasma in a PF-1000 device, a special method was prepared, with the use of plasma images obtained by means of both an optical frame camera and shadowgraphy. Analysis of plasma radiation in the very narrow Äë = 60 Ĺ optical range allowed us to determine the relation between intensity of the plasma radiation and the electron density. It was also shown that the influence of electron temperature on plasma radiation is not large. The presented method allowed us to obtain spatial electron density distributions of plasma (in relative units) in the PF-1000 device. By means of this method a number of important information about the plasma-focus phenomenon was obtained
    corecore