22 research outputs found
Neurotoxic astrocytes directly converted from sporadic and familial ALS patient fibroblasts reveal signature diversities and miR-146a theragnostic potential in specific subtypes
A lack of stratification methods in patients with amyotrophic lateral sclerosis (ALS) is likely implicated in therapeutic failures. Regional diversities and pathophysiological abnormalities in astrocytes from mice with SOD1 mutations (mSOD1-ALS) can now be explored in human patients using somatic cell reprogramming. Here, fibroblasts from four sporadic (sALS) and three mSOD1-ALS patients were transdifferentiated into induced astrocytes (iAstrocytes). ALS iAstrocytes were neurotoxic toward HB9-GFP mouse motor neurons (MNs) and exhibited subtype stratification through GFAP, CX43, Ki-67, miR-155 and miR-146a expression levels. Up- (two cases) and down-regulated (three cases) miR-146a values in iAstrocytes were recapitulated in their secretome, either free or as cargo in small extracellular vesicles (sEVs). We previously showed that the neuroprotective phenotype of depleted miR-146 mSOD1 cortical astrocytes was reverted by its mimic. Thus, we tested such modulation in the most miR-146a-depleted patient-iAstrocytes (one sALS and one mSOD1-ALS). The miR-146a mimic in ALS iAstrocytes counteracted their reactive/inflammatory profile and restored miR-146a levels in sEVs. A reduction in lysosomal activity and enhanced synaptic/axonal transport-related genes in NSC-34 MNs occurred after co-culture with miR-146a-modulated iAstrocytes. In summary, the regulation of miR-146a in depleted ALS astrocytes may be key in reestablishing their normal function and in restoring MN lysosomal/synaptic dynamic plasticity in disease sub-groups
Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease affecting children. It is caused by mutations in the IGHMBP2 gene (11q13) and presently has no cure. Recently, adeno-associated virus serotype 9 (AAV9)-mediated gene therapy has been shown to rescue the phenotype of animal models of another lower motor neuron disorder, spinal muscular atrophy 5q, and a clinical trial with this strategy is ongoing. We report rescue of the disease phenotype in a SMARD1 mouse model after therapeutic delivery via systemic injection of an AAV9 construct encoding the wild-type IGHMBP2 to replace the defective gene. AAV9-IGHMBP2 administration restored protein levels and rescued motor function, neuromuscular physiology, and life span (450% increase), ameliorating pathological features in the central nervous system, muscles, and heart. To test this strategy in a human model, we transferred wild-type IGHMBP2 into human SMARD1-induced pluripotent stem cell-derived motor neurons; these cells exhibited increased survival and axonal length in long-term culture. Our data support the translational potential of AAV-mediated gene therapies for SMARD1, opening the door for AAV9-mediated therapy in human clinical trials
Translating SOD1 gene silencing towards the clinic: A highly efficacious, off-target free and biomarker-supported strategy for familial ALS
Twenty per cent of familial amyotrophic lateral sclerosis (fALS) cases are caused by mutations in
the gene encoding human cytosolic Cu/Zn superoxide dismutase (hSOD1). Efficient translation of
the therapeutic potential of interfering RNA (RNAi) for the treatment of SOD1-ALS patients
requires the development of vectors that are free of significant off-target effects and with reliable
biomarkers to discern sufficient target engagement and correct dosing. Using adeno-associated virus
serotype 9 to deliver RNAi against hSOD1 in the SOD1G93A mouse model, we found that intrathecal
injection of the therapeutic vector via the cisterna magna delayed onset of disease, decreased motor
neuron death at end stage by up to 88% and prolonged the median survival of SOD1G93A mice by up
to 42%. To our knowledge this is the first report to demonstrate no significant off-target effects
linked to hSOD1 silencing, providing further confidence in the specificity of this approach. We also
report the measurement of cerebrospinal fluid (CSF) hSOD1 protein levels as a biomarker of
effective dosing and efficacy of hSOD1 knockdown. Together, these data provide further confidence
in the safety of the clinical therapeutic vector. The CSF biomarker will be a useful measure of
biological activity for translation into human clinical trials
A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse
Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by α-motor neuron loss in the spinal cord anterior horn. SMA results from deletion or mutation of the Survival Motor Neuron 1 gene (SMN1) and retention of SMN2. A single nucleotide difference between SMN1 and SMN2 results in exclusion of exon 7 from the majority of SMN2 transcripts, leading to decreased SMN protein levels and development of SMA. A series of splice enhancers and silencers regulate incorporation of SMN2 exon 7; these splice motifs can be blocked with antisense oligomers (ASOs) to alter SMN2 transcript splicing. We have evaluated a morpholino oligomer against ISS-N1 (HSMN2Ex7D(-10,-29)), and delivered this morpholino (MO) to postnatal day 0 (P0) SMA pups (Smn -/-, SMN2+/+, SMN∆7 +/+) by intracerebroventricular (ICV) injection. Survival was increased markedly from 15 days to over 100 days. Delayed CNS MO injection has moderate efficacy, and delayed peripheral injection has mild survival advantage, suggesting that early CNS ASO administration is essential for SMA therapy consideration. ICV treatment increased full-length SMN2 transcript as well as SMN protein in neural tissue, but only minimally in peripheral tissue. Interval analysis shows a decrease in alternative splice modification over time. We suggest that CNS increases of SMN will have a major impact on SMA, and an early increase of SMN level results in correction of motor phenotypes. Last, the early introduction by intrathecal delivery of morpholino oligomers is a potential treatment for SMA patients
Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: A dose-response study in mice and nonhuman primates
Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders
Geographic and temporal variation in the consumption of bats by European barn owls
Capsule We report a review of the occurrence of bats in the Barn Owl diet Tyto alba in Europe. Based on 802 studies reporting 4.02 million prey items identified in pellets, 4949 were bats (0.12%). We found that bat predation decreased during the last 150 years, is more frequent on islands than mainland, and is higher in eastern than western Europe and in southern than northern Europe. Although Barn Owls usually capture bats opportunistically, they can sometimes specialize on them