47 research outputs found

    EARLY ASSESSMENT OF TUMOR RESPONSE TO RADIATION THERAPY USING HIGH-RESOLUTION CONTRAST ENHANCED ULTRASOUND IMAGING TECHNIQUES AND APPLICATIONS FOR PROSTATE CANCER

    Get PDF
    Traditional anatomical imaging for cancer diagnosis and assessing response to therapy is limited to just the superficial appearance of a tumor. A functional imaging approach, which takes a closer at look various microenvironments within the tumor, is likely to offer a more holistic view of the tumor behavior and response to treatment. Acoustic Angiography is a novel super-harmonic contrast ultrasound imaging technique that utilizes a dual-frequency transducer to quickly generate high-resolution 3D microvascular images with exceptionally high contrast-to-tissue ratio. Herein, we demonstrate the ability of Acoustic Angiography to quantify tumor microvascular features and investigate their changes after therapeutic doses of radiation therapy in a tumor bearing rodent model. We then demonstrate using functional longitudinal data analysis that quantified microvascular features can be used to predict radiation therapy response with limited time point measurements. Prostate cancer is the most common cancer in men, resulting in near 30,000 deaths a year in the United States alone. Current diagnostic and staging techniques for prostate cancer have been shown to have low sensitivity and specificity, limiting early detection and intervention. There is potential for improving ultrasound imaging techniques for aiding in prostate cancer detection and biopsy guidance with Acoustic Angiography imaging. The clinical translation of Acoustic Angiography hinges on certain design improvements, primarily increased depth of penetration. The last part of this dissertation discusses the development of a dual-frequency linear array transducer for Acoustic Angiography. This dissertation consists of two primary hypotheses: 1) Acoustic Angiography can be used to quantify changes in tumor microvascular features and predict radiation treatment response earlier than using tumor volume alone. 2) Acoustic Angiography using a dual-frequency linear array transducer is suitable for prostate cancer imaging.Doctor of Philosoph

    Triple Langmuir Probes Measurements of LaB6 Hollow Cathodes Plume

    Get PDF
    Lanthanum hexaboride hollow cathodes represent a viable option for high power Hall effect thruster applications, under development for the next generation of manned and robotic interplanetary missions. In this scenario, SITAEL and the University of Pisa are actively developing high current hollow cathodes capable of providing discharge current in the range 10–100 A to be coupled with high power Hall effect thrusters. The cathode design is based on an in-house theoretical model of the internal sections of the cathode, recently integrated with a simplified model of the cathode plume. Despite the application of hollow cathodes on flight and laboratory model Hall effect thrusters, many questions remain unsolved. In particular, issues related to onset of instabilities, due to plume mode or ion acoustic turbulence, are still unclear, while it is known that they can affect the overall performance of the cathode and thruster unit. This paper focuses on the experimental investigation of the cathode plume by means of measurements of the main plasma parameters, at different operating conditions and for different cathode geometry. Two cathodes were investigated, namely HC20 and HC60, designed to be coupled with SITAEL's HT5k and HT20k (5 kW- and 20 kW-class) Hall effect thrusters. The cathodes were mounted in stand-alone configuration with an auxiliary cylindrical anode. The experimental campaign was performed using triple Langmuir probes as plasma diagnostic system. The probes were mounted on scanning mechanisms to measure the plume parameters at various radial and axial distances from the keeper exit. General trends of electron temperature, plasma potential and plasma density are reported in terms of discharge current, mass flow rate and cathode orifice geometry. The results highlight that the cathode plate orifice selection affects the plume mode onset, giving the possibility to extend the stable mode of cathode operation in the current range required by the thruster

    Management of Indeterminate Cystic Kidney Lesions: Review of Contrast-enhanced Ultrasound as a Diagnostic Tool

    Get PDF
    Indeterminate cystic kidney lesions found incidentally on abdominal imaging are an increasingly prevalent diagnostic challenge. The standard workup includes Bosniak classification with contrast-enhanced CT or MRI. However, these tests are costly and not without risks. Contrast-enhanced ultrasound (CEUS) is a relatively new imaging technique with lower risk of adverse events than iodine-containing contrast or gadolinium. In our review of the evidence for characterization of cystic kidney lesions with CEUS, CEUS displayed sensitivity (89–100%) and negative predictive value (86–100%) comparable to contrast-enhanced CT or MRI with no decrease in specificity compared to CT and only a slight decrease compared to MRI

    Early Assessment of Tumor Response to Radiation Therapy using High-Resolution Quantitative Microvascular Ultrasound Imaging

    Get PDF
    Measuring changes in tumor volume using anatomical imaging weeks to months post radiation therapy (RT) is currently the clinical standard for indicating treatment response to RT. For patients whose tumors do not respond successfully to treatment, this approach is suboptimal as timely modification of the treatment approach may lead to better clinical outcomes. We propose to use tumor microvasculature as a biomarker for early assessment of tumor response to RT. Acoustic angiography is a novel contrast ultrasound imaging technique that enables high-resolution microvascular imaging and has been shown to detect changes in microvascular structure due to cancer growth. Data suggest that acoustic angiography can detect longitudinal changes in the tumor microvascular environment that correlate with RT response

    Optimization of multi-pulse sequences for nonlinear contrast agent imaging using a cMUT array

    Get PDF
    Capacitive micromachined ultrasonic transducer (cMUT) technology provides advantages such as wide frequency bandwidth, which can be exploited for contrast agent imaging. Nevertheless, the efficiency of traditional multi-pulse imaging schemes, such as pulse inversion (PI), remains limited because of the intrinsic nonlinear character of cMUTs. Recently, a new contrast imaging sequence, called bias voltage modulation sequence (BVM), had been specifically developed for cMUTs to suppress their unwanted nonlinear behavior. In this study, we propose to optimize contrast agent detection by combining the BVM sequence with PI and/or chirp reversal (CR). An aqueous dispersion of lipid encapsulated microbubbles was exposed to several combinations of multi-pulse imaging sequences. Approaches were evaluated in vitro using 9 inter-connected elements of a cMUT linear array (excitation frequency of 4 MHz; peak negative pressure of 100 kPa). For sequences using chirp excitations, a specific compression filter was designed to compress and extract several nonlinear components from the received microbubble responses. A satisfactory cancellation of the nonlinear signal from the source is achieved when BVM is combined with PI and CR. In comparison with PI and CR imaging modes alone, using sequences incorporating BVM increases the contrast-to-tissue ratio by 10.0 dB and 4.6 dB, respectively. Furthermore, the combination of BVM with CR and PI results in a significant increase of the contrast-to-noise ratio (+29 dB). This enhancement is attributed to the use of chirps as excitation signals and the improved preservation of several nonlinear components contained within the contrast agent response

    A Pilot Clinical Study in Characterization of Malignant Renal-cell Carcinoma Subtype with Contrast-enhanced Ultrasound

    Get PDF
    Malignant renal cell carcinoma (RCC) is a diverse set of diseases, which are independently difficult to characterize using conventional MRI and CT protocols due to low temporal resolution to study perfusion characteristics. Because different disease subtypes have different prognoses and involve varying treatment regimens, the ability to determine RCC subtype non-invasively is a clinical need. Contrast-enhanced ultrasound (CEUS) has been assessed as a tool to characterize kidney lesions based on qualitative and quantitative assessment of perfusion patterns, and we hypothesize that this technique might help differentiate disease subtypes. Twelve patients with RCC confirmed pathologically were imaged using contrast-enhanced ultrasound. Time intensity curves were generated and analyzed quantitatively using ten characteristic metrics. Results showed that peak intensity (p=0.001) and time-to-80% on wash-out (p=0.004) provided significant differences between clear cell, papillary, and chromophobe RCC subtypes. These results suggest that CEUS may be a feasible test for characterizing RCC subtypes

    Cavitation Enhancement Increases the Efficiency and Consistency of Chromatin Fragmentation from Fixed Cells for Downstream Quantitative Applications

    Get PDF
    One of the most sensitive, time-consuming, and variable steps of chromatin immunoprecipitation (ChIP) is chromatin sonication. Traditionally, this process can take hours to properly sonicate enough chromatin for multiple ChIP assays. Further, the length of sheared DNA is often inconsistent. In order to faithfully measure chemical and structural changes at the chromatin level, sonication needs to be reliable. Thus, chromatin fragmentation by sonication represents a significant bottleneck to downstream quantitative analysis. To improve the consistency and efficiency of chromatin sonication, we developed and tested a cavitation enhancing reagent based on sonically active nanodroplets. Here, we show that nanodroplets increase sonication efficiency by 16-fold and provide more consistent levels of chromatin fragmentation. Using the previously characterized chromatin in vivo assay (CiA) platform, we generated two distinct chromatin states in order to test nanodroplet-assisted sonication sensitivity in measuring post-translational chromatin marks. By comparing euchromatin to chemically induced heterochromatin at the same CiA:Oct4 locus, we quantitatively measure the capability of our new sonication technique to resolve differences in chromatin structure. We confirm that nanodroplet-assisted sonication results are indistinguishable from those of samples processed with traditional sonication in downstream applications. While the processing time for each sample was reduced from 38.4 to 2.3 min, DNA fragment distribution sizes were significantly more consistent with a coefficient of variation 2.7 times lower for samples sonicated in the presence of nanodroplets. In conclusion, sonication utilizing the nanodroplet cavitation enhancement reagent drastically reduces the amount of processing time and provides consistently fragmented chromatin of high quality for downstream applications

    Oxygen Microbubbles Improve Radiotherapy Tumor Control in a Rat Fibrosarcoma Model – A Preliminary Study

    Get PDF
    Cancer affects 39.6% of Americans at some point during their lifetime. Solid tumor microenvironments are characterized by a disorganized, leaky vasculature that promotes regions of low oxygenation (hypoxia). Tumor hypoxia is a key predictor of poor treatment outcome for all radiotherapy (RT), chemotherapy and surgery procedures, and is a hallmark of metastatic potential. In particular, the radiation therapy dose needed to achieve the same tumor control probability in hypoxic tissue as in normoxic tissue can be up to 3 times higher. Even very small tumors (<2–3 mm3) comprise 10–30% of hypoxic regions in the form of chronic and/or transient hypoxia fluctuating over the course of seconds to days. We investigate the potential of recently developed lipid-stabilized oxygen microbubbles (OMBs) to improve the therapeutic ratio of RT. OMBs, but not nitrogen microbubbles (NMBs), are shown to significantly increase dissolved oxygen content when added to water in vitro and increase tumor oxygen levels in vivo in a rat fibrosarcoma model. Tumor control is significantly improved with OMB but not NMB intra-tumoral injections immediately prior to RT treatment and effect size is shown to depend on initial tumor volume on RT treatment day, as expected

    Diagnostic accuracy of contrast-enhanced ultrasound for characterization of kidney lesions in patients with and without chronic kidney disease

    Get PDF
    Abstract Background Patients with chronic kidney disease are at increased risk of cystic kidney disease that requires imaging monitoring in many cases. However, these same patients often have contraindications to contrast-enhanced computed tomography and magnetic resonance imaging. This study evaluates the accuracy of contrast-enhanced ultrasound (CEUS), which is safe for patients with chronic kidney disease, for the characterization of kidney lesions in patients with and without chronic kidney disease. Methods We performed CEUS on 44 patients, both with and without chronic kidney disease, with indeterminate or suspicious kidney lesions (both cystic and solid). Two masked radiologists categorized lesions using CEUS images according to contrast-enhanced ultrasound adapted criteria. CEUS designation was compared to histology or follow-up imaging in cases without available tissue in all patients and the subset with chronic kidney disease to determine sensitivity, specificity and overall accuracy. Results Across all patients, CEUS had a sensitivity of 96% (95% CI: 84%, 99%) and specificity of 50% (95% CI: 32%, 68%) for detecting malignancy. Among patients with chronic kidney disease, CEUS sensitivity was 90% (95% CI: 56%, 98%), and specificity was 55% (95% CI: 36%, 73%). Conclusions CEUS has high sensitivity for identifying malignancy of kidney lesions. However, because specificity is low, modifications to the classification scheme for contrast-enhanced ultrasound could be considered as a way to improve contrast-enhanced ultrasound specificity and thus overall performance. Due to its sensitivity, among patients with chronic kidney disease or other contrast contraindications, CEUS has potential as an imaging test to rule out malignancy. Trial registration This trial was registered in clinicaltrials.gov, NCT01751529

    The Performance of Flash Replenishment Contrast-Enhanced Ultrasound for the Qualitative Assessment of Kidney Lesions in Patients with Chronic Kidney Disease

    Get PDF
    We investigated the accuracy of CEUS for characterizing cystic and solid kidney lesions in patients with chronic kidney disease (CKD). Cystic lesions are assessed using Bosniak criteria for computed tomography (CT) and magnetic resonance imaging (MRI); however, in patients with moderate to severe kidney disease, CT and MRI contrast agents may be contraindicated. Contrast-enhanced ultrasound (CEUS) is a safe alternative for characterizing these lesions, but data on its performance among CKD patients are limited. We performed flash replenishment CEUS in 60 CKD patients (73 lesions). Final analysis included 53 patients (63 lesions). Four readers, blinded to true diagnosis, interpreted each lesion. Reader evaluations were compared to true lesion classifications. Performance metrics were calculated to assess malignant and benign diagnoses. Reader agreement was evaluated using Bowker’s symmetry test. Combined reader sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for diagnosing malignant lesions were 71%, 75%, 45%, and 90%, respectively. Sensitivity (81%) and specificity (83%) were highest in CKD IV/V patients when grouped by CKD stage. Combined reader sensitivity, specificity, PPV, and NPV for diagnosing benign lesions were 70%, 86%, 91%, and 61%, respectively. Again, in CKD IV/V patients, sensitivity (81%), specificity (95%), and PPV (98%) were highest. Inter-reader diagnostic agreement varied from 72% to 90%. In CKD patients, CEUS is a potential low-risk option for screening kidney lesions. CEUS may be particularly beneficial for CKD IV/V patients, where kidney preservation techniques are highly relevant
    corecore