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Abstract

Malignant renal cell carcinoma (RCC) is a diverse set of diseases, which are independently 

difficult to characterize using conventional MRI and CT protocols due to low temporal resolution 

to study perfusion characteristics. Because different disease subtypes have different prognoses and 

involve varying treatment regimens, the ability to determine RCC subtype non-invasively is a 

clinical need. Contrast-enhanced ultrasound (CEUS) has been assessed as a tool to characterize 

kidney lesions based on qualitative and quantitative assessment of perfusion patterns, and we 

hypothesize that this technique might help differentiate disease subtypes. Twelve patients with 

RCC confirmed pathologically were imaged using contrast-enhanced ultrasound. Time intensity 

curves were generated and analyzed quantitatively using ten characteristic metrics. Results showed 

that peak intensity (p=0.001) and time-to-80% on wash-out (p=0.004) provided significant 

differences between clear cell, papillary, and chromophobe RCC subtypes. These results suggest 

that CEUS may be a feasible test for characterizing RCC subtypes.
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Introduction

Renal cell carcinoma (RCC) affects approximately 1 in every 100 American individuals, 

with an estimated 62,000 new cases to be diagnosed in 2016 in the United States alone.1 

Classification of RCC has evolved over the last three decades, leading to four main subtypes: 

clear cell, papillary type I, papillary type II, chromophobe. Clear cell RCC is the most 

common (~75%) type of RCC, followed by papillary (~16%) and chromophobe (~7%). 

Each of these tumors has been recently characterized genetically by the cancer genome atlas, 

underscoring the unique biology of each disease type.2–4 RCC classification is a critical 

diagnostic step since clinical management is based on the varying prognoses and therapeutic 

pathways of each subtype.5 Clear cell and papillary type II RCCs have a higher probability 

of metastasizing even after nephrectomy for organ-confined tumors, while the prognosis for 

papillary type I and chromophobe RCCs are significantly better and are therefore managed 

more conservatively compared to clear cell RCC.6,7 Radiographic distinction between these 

malignant RCC subtypes is inherently difficult due to molecular aberrations and structural 

contributions that lead to shared tumor morphology.8

Traditional gray-scale ultrasound is effective for differentiating solid from cystic kidney 

lesions, but lacks the sensitivity to further classify solid masses according to histologic type. 

Contrast-enhanced computed-tomography (CT) and magnetic resonance imaging (MRI) are 

the standard imaging exams used to assess the malignancy of solid masses and to 

characterize perfusion patterns; however, the contrast sensitivity does not adequately resolve 

histologic characteristics of many types of tumors arising in the kidney, including 

hypovascular and cystic lesions, necrosis, debris and hemorrhagic areas in tumors.9 

Additionally, the nephrotoxicity of the contrast agents often limits their use.10 Thus, tissue 

analysis, often post-nephrectomy, has remained the gold standard for identifying RCC 

subtypes despite the invasive nature of the procedure.

Recent clinical studies have shown that contrast-enhanced ultrasound (CEUS), a non-

nephrotoxic and non-ionizing imaging modality, has the ability to assess malignancy of solid 

and cystic kidney lesions based on qualitative enhancement and perfusion patterns.11 Only a 

few studies, however, have considered quantitative approaches to further characterize RCC 

subtypes.7,12–15 In this study, we quantify perfusion patterns in 12 patients diagnosed with 

kidney masses and correlate specific metrics with pathologic findings.

Materials and Methods

Patient Recruitment and Initial Tests

University of North Carolina’s Institutional Review Board approved this study and written 

informed consent was obtained from each patient prior to the study. Over a two-year period, 

twenty-four individuals diagnosed with kidney lesions were recruited for the study and 

imaged with contrast-enhanced ultrasound (CEUS). All patients were imaged using 

traditional ultrasound and either CT or MRI prior to CEUS, and tissue biopsy or resection 

was performed on 22 of the 24 patients post-CEUS. Histologic analyses were performed on 

all 22 patients and classified by expert clinical pathologists as clear cell RCC (ccRCC, 

n=15), papillary RCC (pRCC, n=3), chromophobe RCC (chRCC, n=2), angiomyolipoma 
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(AML, n=1), or oncocytoma (OCT, n=1). AMLs and OCTs were excluded from the study as 

benign tumors. Eight of the twenty-two patients were excluded from quantitative analysis 

due to poor video quality caused by excessive out-of-plane motion (displacement greater 

than half the size of the lesion of interest) and inadequately visible parenchyma (less than a 

5 mm2 ROI). Therefore, the remaining 12 were included in the final analysis. Two patients 

underwent core biopsies, while the remaining 10 underwent partial or complete 

nephrectomy.

Contrast-Enhanced Ultrasound

CEUS imaging was performed on a Siemens/Acuson Sequoia 512 (Mountain View, CA, 

USA) by a trained sonographer. Traditional b-mode ultrasound clips were first recorded for 

each patient to determine the anatomical location and dimensions of the lesion. The 

transducer was optimally positioned so that the lesion and normal parenchyma (renal cortex) 

were clearly visible and so that breathing motion was maintained within the plane. After the 

sonographer localized the lesion of interest and was able to maintain a consistent image 

along with patient breathing, a mechanical stereotactic clamp was fixed to maintain the 

transducer position. The clamp was introduced to help minimize sonographer hand motion 

during acquisition of the cine loop and to alleviate physical cramping of the wrist during the 

long imaging period. The depth and spacing of the imaging foci were adjusted to the center 

on the lesion based on the lesion size and depth. Cadence Pulse Sequence (CPS) mode was 

used for contrast imaging at a mechanical index (MI) of 0.19. A 5 mL bolus injection of the 

diluted microbubble contrast agent, Definity (Lantheus, North Billerica, MA, USA), was 

administered through the antecubital vein over 15 seconds, followed by a 5 mL flush of 

0.9% saline. Contrast dose was based on patient weight (0.5 mL for <125 lb, 0.65 mL for 

125–185 lb, 1.0 mL for >185 lb). Image acquisition was initiated immediately prior to the 

bolus injection and ended after 3 minutes, capturing contrast wash-in and at least 2 minutes 

of contrast wash-out.

CEUS Time-Intensity-Curve Analysis

DICOM files containing the b-mode and contrast clips were copied from the Sequoia 512 

and converted to audio-video interleave files for subsequent analysis using ImageJ (National 

Institutes of Health, Bethesda, MD, USA) and MATLAB (MathWorks, Natick, MA, USA). 

Clips that contained severe out-of-plane breathing and body motion were omitted from 

quantitative analysis. In the instances where breathing motion was regular and cyclic, a 

targeted ROI for the lesion and parenchyma was selected whenever it appeared in plane. 

Rigid image registration was performed using the StackReg plugin for ImageJ to correct in-

plane breathing motion. Ellipsoidal regions-of-interest (ROI) with a minimum diameter of 5 

mm were selected for the lesion and the renal cortex separately at approximately the same 

depth (±1 cm) (Figure 1). Lesion ROIs were selected to encompass the entire lesion 

excluding the normal parenchyma. Time-intensity-curves (TIC) were generated for all ROIs. 

Any cystic and necrotic regions that were present were excluded in the ROI selection. 

Residual breathing motion was further removed by filtering the TICs in MATLAB using a 

low pass filter (f−3dB = 0.025 Hz). Ten metrics were applied to each of the TICs, including 

peak contrast intensity (PI), time-to-peak (TPk), time-to-peak ratio (TPk-r), time-to-80% on 

wash-out (T80%), time-to-80% on wash-out ratio (T80%-r), wash-in slope (WIS), wash-out 
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slope (WOS), wash-in ratio (WIS-r), wash-out ratio (WOS-r), and wash-in/wash-out ratio 

(WIWOS-r). The metrics are described below and graphically summarized in Figure 2 and 

Table 1. Time-to-80% was estimated based on the inflection point of the decay phase of the 

gamma variate function (y = A · t · (1 − e−βt) + C), which is approximately at 75% of the 

peak intensity. Peak contrast intensity was measured with non-normalized data, which is not 

shown in Figure 2.

Histological Analysis

Histologic tissue diagnoses for resected (N=10) or biopsied (N=2) tissues were obtained 

through routine clinical reports at the University of North Carolina at Chapel Hill, 

Department of Surgical Pathology. Diagnosed lesion subtypes included chromophobe RCC, 

clear cell RCC, and papillary RCC.

Statistical Analysis

Statistical analyses were performed using MATLAB (MathWorks, Natick, MA, USA) and 

R-Studio (R Foundation for Statistical Computing, Vienna, Austria)16. For each metric, 

results were grouped by cancer type. One-way ANOVA was performed for each metric and 

the Tukey-Kramer multiple-comparison test was used to determine significant differences 

between each group.

Results

Twelve final CEUS clips qualified for TIC analysis based on image quality—clips with 

excessive out-of-plane motion or clips with inadequately visible parenchyma were excluded. 

The pathological findings for the twelve patients showed presence of 2 papillary RCC, 8 

clear cell RCC, and 2 chromophobe RCC. Lesion sizes ranged from 1.72 cm to 7.50 cm in 

the longest dimension (3.75 cm ± 1.57 cm).

One-way ANOVA statistical test results for each metric are summarized in Table 2. 

Significant differences with a 95% confidence interval between groups were observed using 

the peak intensity ratio (Figure 3) with p=0.001 (p=0.001 between clear cell and papillary 

RCCs, and p=0.04 between chromophobe and papillary RCCs) and time-to-80% ratio metric 

(Figure 4) with p=0.004 (p=0.020 between chromophobe and clear cell RCCs, and p=0.003 

between chromophobe and papillary RCCs). The PI metric measured the lowest lesion-to-

parenchyma ratio for papillary RCC (0.57 ± 0.24), followed by chromophobe RCC (0.92 

± 0.03), and clear cell RCC (1.1 ± 0.1). The time-to-80% ratio metric also measured the 

lowest lesion-to-parenchyma ratio for papillary RCC (0.35 ± 0.33), followed by clear cell 

RCC (0.68 ± 0.16), and chromophobe (1.14 ± 0.05). All other metrics did not measure 

significant differences (p≫0.05) (Table 2).

Discussion

Previous studies have demonstrated the utility of qualitative and quantitative CEUS 

perfusion analysis (including TIC analysis) for distinguishing solid from cystic kidney 

masses and malignant from benign solid masses.12,13 Solid masses, including most RCCs, 

and oncocytomas, typically appear hypoechoic on traditional b-mode ultrasound. Other solid 
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lesions, such as angiomyolipomas typically appear hyperechoic due to their fatty content, 

but may sometimes also appear hypoechoic. CEUS has been shown to be a viable option in 

these cases where malignancy is unclear and contrast MR/CT are contraindicated. The focus 

of our study is to further discriminate between RCCs given the varying prognoses and 

treatments for each subtype. Pre-surgical knowledge of the suspected histological type of 

tumor would benefit patients and health-care providers in making decisions about 

interventions, therapy, or clinical management approaches that incorporate careful 

observation. Several studies have recently emerged that quantify perfusion patterns of RCC 

subtype.7,10,12,13,17

King et al. reported a similar TIC analysis and concluded that some metrics are better suited 

for certain types of kidney lesions.13 For example, ccRCC enhances more than the 

surrounding parenchyma and has a faster time-to-peak (TPk), while pRCC enhances less 

than the parenchyma and has a slower TPk. chRCC was shown to have intermediate peak 

enhancement and TPk between ccRCC and pRCC. Metrics such as homogeneity of 

enhancement and rate of de-enhancement were shown to be more relevant to 

angiomyolipomas and oncocytomas.13

Results for wash-in slope, wash-out slope, and TPk analyses have largely been inconsistent 

across previously published studies. This may be due to technical variations of the imaging 

and analysis technique and physiologic differences in the tumor. In all cases, lesion 

perfusion characteristics were compared to the renal cortex. Consistency in imaging depth 

has a significant impact on relative enhancement measurements between normal and 

diseased tissue due to attenuation. Also, heterogeneity of RCCs at different stages of 

development may induce user error by choosing a cross-section that is not entirely 

representative of the entire mass. It is also important to consider that many studies do not 

distinguish between histologies and are focused instead on the feature that distinguish 

benign from malignant disease. Some results report that all malignant RCCs display a fast 

wash-in, while others describe pRCC with a slower wash-in.10,12,13,17 We observed that 

many TICs, especially for pRCC, exhibited a bi-phasic wash-out—a steeper initial wash-out 

of the contrast bolus injection, followed by more gradual clearance of the recirculating 

contrast. The gamma-variate fit is commonly used to model kidney perfusion, which is 

estimated by a left-skewed Gaussian curve with an exponentially decaying tail.18 The point 

of inflection on the downslope occurs approximately at 75% of the peak intensity, which 

happened to be near the beginning of the second phase of wash-out. Although our TICs did 

not conform to the gamma-variate fit as well as other studies have shown, we chose 80% to 

be our threshold to measure the start of the second phase of contrast wash-out. Cai and King 

used 60% and 50%, respectively, which we observed to be during the second phase of wash-

out.12,13 We believe that the bi-phasic wash-out pattern is of clinical importance, and 

measuring the time interval between phases may be a method of describing this pattern. 

Other perfusion models (e.g. Karshafian et al.’s lognormal perfusion model) that describe 

contrast replenishment during destruction-reperfusion imaging, can extrapolate information 

related to the distribution of flow speeds, vascular size and morphology, and blood volume. 

Burns et al. exquisitely describe the value of choosing an appropriate perfusion model for 

enabling versatile and reproducible measurements.19,20
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Interestingly, the two cases of pRCC we observed exhibited a statistically significantly fast 

decrease in contrast intensity compared to the surrounding renal cortex, opposite to what has 

been reported in other studies.12,13 No significant differences were observed when 

measuring slopes for wash-in and the second phase of wash-out. While it is difficult to 

suggest why pRCC and chRCC display a steep and near constant wash-out, respectively, 

these may be clinically relevant perfusion patterns specific to pRCC and chRCC and should 

be further investigated. Peak-intensity results agreed with previous studies reporting that 

ccRCCs present as hyper-enhancing, while chRCC and pRCC, generally present iso or 

hypo-enhancing. ccRCC has been reported to be a faster growing, metastatic, and more 

vascular cancer relative to chRCC and pRCC, which supports the hypo-enhancing 

presentation of pRCC on CEUS.21–24

Lu et al. recently published results from a large sample size study using a different 

quantitative approach to differentiate various RCCs. Their TIC analysis consisted of a 

temporal comparison between the lesion and renal parenchymal enhancement that included 

four distinct dynamic vascular patterns: unipolar positive (hyper-enhanced lesion through 

wash-in/wash-out), unipolar negative (hypo-enhanced lesion through wash-in/wash-out), 

bipolar positive (hyper-enhanced lesion through wash-in and hypo-enhanced through wash-

out), and bipolar negative (hypo-enhanced lesion through wash-in and hyper-enhanced 

through wash-out). They concluded that unipolar and bipolar positive flow patterns were 

indicative of ccRCC and unipolar negative was indicative of pRCC and chRCC. While rates 

of wash-out were not included in their analysis, our lesion-to-cortex peak enhancement 

results agreed with these findings.7

This study has several limitations. Our sample size was limited to only 12 patients. Out-of-

plane breathing motion, obstruction of the lesion and parenchyma from rib and bowel 

shadowing, and lack of diagnostic pathology eliminated approximately half of the available 

data sets. For some patients, ideal transducer placement (i.e. wedging under the ribs) was 

sacrificed due to patient comfort, which is a significant limitation of CEUS for focal kidney 

imaging. We believe that standardized CEUS sonography training that describes how to 

handle the above limitations will significantly improve imaging quality.

A technical improvement made in this study was the use of a stereotactic clamp to hold the 

transducer for the 3-minute clip. This not only alleviated sonographer hand and wrist 

cramping, but maintained steady positioning throughout the clip. This was only feasible if 

the breathing motion was maintained within the imaging plane. For instances where out-of-

plane movement persisted, manual placement by the sonographer was preferred to track the 

breathing motion. Occasionally, the patient body movement would displace the positioning 

of the clamp and re-adjusting the position was difficult. While the stereotactic arm by itself 

may not add significant value to the quality of the ultrasound clips, we believe it can be used 

as an aid in positioning of the transducer for longer scans to alleviate sonographer 

discomfort.

Of the 12 lesions, there were only 2 pRCC and 2 chRCC, which greatly limited our 

statistical power. Given the small sample size, we were still encouraged by the trends 

observed with the time-to-80% metric and, especially, the peak enhancement ratio, which 
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agreed with previous studies. There was only one angiomyolipoma and one oncocytoma, 

which were not included in the final results.

The TICs in this study were generated from a single cross-section through the kidney that 

captured both the lesion and normal parenchyma. For some patients, anatomic constraints 

made it difficult to orient the transducer directly in the center of the kidney parenchyma to 

visualize wash-in/wash-out in both the cortex and medulla. Kogan et al. reported differences 

in perfusion measurements between parasagittal and coronal planes due to varying amounts 

of cortical and medullary tissue in each plane.25 While the ROI for the kidney parenchyma 

was placed over the cortex for image analysis on all of the images, the exact position of the 

ROI undoubtedly was inconsistent. The heterogeneity commonly associated with some 

RCCs is not adequately represented in a single cross-section perfusion analysis.26 Three-

dimensional destruction-reperfusion analysis offers holistic representation of kidney 

function. Feingold et al. reported standard deviations as high as 22% between individual 

cross-sections of the kidney and concluded that the accuracy and repeatability of overall 

kidney perfusion measurements significantly increase with 3-D imaging.27 Unfortunately, 3-

D destruction-reperfusion imaging requires a single-array transducer to scan stepwise 

elevationally and can only capture contrast wash-in. The advent of a two-dimensional array 

transducer capable of high-resolution, real-time 3-D CEUS will allow the calculation of 3-D 

TICs, which will revolutionize kidney perfusion analysis and provide a more precise and 

accurate representation of the vascularity of diseased kidneys and solid kidney lesions. 

Based on our experience, we recommend a second contrast dose to acquire a wash-in/wash-

out clip (after waiting the prescribed amount of time between doses) with the transducer 

centered sagittally over the kidney for more consistent perfusion measurements of the 

parenchyma.

Other limitations of this study are a result of the inherent variability in perfusion imaging. 

Cosgrove et al. describe factors of variability in perfusion imaging, including contrast type, 

circulation profiles of the contrast agent, infusion rate, breathing motion, attenuation, 

imaging settings, etc.28 Overcoming these sources of variability is critical for the widespread 

clinical use of perfusion imaging. Despite these factors, CEUS has been shown to 

characterize kidney lesions with high sensitivities and negative predictive values (89–100% 

and 86–100%, respectively).11

Conclusion

This study suggests that quantitative TIC analysis can be a feasible method for identifying 

subtypes of malignant solid renal masses. We explored different TIC characteristics that may 

be perfusion signatures for clear cell, papillary, and chromophobe RCC subtypes. 

Specifically, peak intensity and time-to-80% on wash-out metrics showed significant 

differences in perfusion patterns between the major RCC subtypes. The bi-phasic wash-out 

pattern may be a clinically important feature that should be further investigated. While very 

few studies have examined the utility of quantitative CEUS for RCC differentiation, there is 

general agreement with several enhancement metrics. Further validation of these techniques, 

coupled with the ease and safety of CEUS, indicate that CEUS may be a powerful tool for 

improving diagnostic efficacy for RCC clinical management.
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Figure 1. 
Ellipsoidal ROI selection of both the lesion (red) and normal renal cortex (blue). ROIs were 

draw with a minimum diameter of 5mm, and parenchyma and lesion ROIs were drawn at 

approximately the same depth (±1 cm).
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Figure 2. 
Sample TICs of a lesion (red) and renal cortex (blue). The raw data is filtered and smoothed 

through software filtering. Wash-in/wash-out slopes are calculated, and time-to-peak and 

time-to-80% wash-out are calculated based on the filtered curves.
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Figure 3. 
Peak intensity ratio results. Papillary RCC measured 0.57 ± 0.24, chromophobe RCC 

measured 0.92 ± 0.03, and clear cell RCC measured 1.1 ± 0.1. The papillary RCC PI ratio 

was significantly different from clear cell (p=0.001) and chromophobe (p=0.04) ratios.
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Figure 4. 
Time-to-80% ratio results. Papillary RCC measured 0.35 ± 0.33, chromophobe RCC 

measured 1.14 ± 0.05, and clear cell RCC measured 0.68 ± 0.16. The chromophobe RCC 

time-to-80% ratio was significantly different from clear cell (p=0.02) and chromophobe 

(p=0.003) ratios.
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Table 1

Definitions for metrics used for TIC analysis.

Metric Definition

Peak contrast intensity ratio Ratio of peak intensity (lesion/parenchyma)

Time-to-peak Time to peak intensity of lesion

Time-to-peak ratio Ratio of time to peak intensity (lesion/parenchyma)

Time-to-80% Time from peak intensity to 80% on wash-out for lesion

Time-to-80% on wash-out ratio Ratio of the time from peak intensity to 80% on wash-out (lesion/parenchyma)

Wash-in slope Wash-in slope of lesion

Wash-out slope Wash-out slope of lesion

Wash-in ratio Ratio of wash-in slopes (lesion/parenchyma)

Wash-out ratio Ratio of wash-out slopes (lesion/parenchyma)

Wash-in/Wash-out ratio Ratio of wash-in to wash-out of lesion
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Table 2

Results from ten metrics derived from lesion and parenchyma TICs.

Metric P-value (*p<0.05) P-value (cc v p) P-value (cc v ch) P-value (p v ch)

Peak Intensity ratio (PI) 0.001* 0.001 0.18 0.04

Time to Peak (TPk) 0.851 --- --- ---

Time to Peak ratio (TPk-r) 0.978 --- --- ---

Time to 80% (T80%) 0.065 --- --- ---

Time to 80% ratio (T80%-r) 0.004* 0.08 0.02 0.003

Wash-in Slope (WIS) 0.957 --- --- ---

Wash-out Slope (WOS) 0.910 --- --- ---

Wash-in Slope ratio (WIS-r) (lesion/parenchyma) 0.890 --- --- ---

Wash-out Slope ratio (WOS-r) (lesion/parenchyma) 0.155 --- --- ---

Wash-in/Wash-out Slope ratio (WIWOS-r) 0.866 --- --- ---
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