69 research outputs found
Clinical and Genetic Screening for Hypertrophic Cardiomyopathy in Paediatric Relatives: Changing Paradigms in Clinical Practice
Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality in children. While the aetiology is heterogeneous, most cases are caused by variants in the genes encoding components of the cardiac sarcomere, which are inherited as an autosomal dominant trait. In recent years, there has been a paradigm shift in the role of clinical screening and predictive genetic testing in children with a first-degree relative with HCM, with the recognition that phenotypic expression can, and often does, manifest in young children and that familial disease in the paediatric age group may not be benign. The care of the child and family affected by HCM relies on a multidisciplinary team, with a key role for genomics. This review article summarises current evidence in clinical and genetic screening for hypertrophic cardiomyopathy in paediatric relatives and highlights aspects that remain to be resolved
Risk of sudden cardiac death in childhood hypertrophic cardiomyopathy: Time to solve the mystery
Hypertrophic cardiomyopathy (HCM) is defined as left ventricular hypertrophy in the absence of loading conditions sufficient to cause the observed abnormality. The true prevalence in childhood is unknown; the aetiology is more heterogeneous than that seen in adult populations, and includes inborn errors of metabolism, malformation syndromes and neuromuscular syndromes. However, one of the greatest clinical challenges in managing young patients with HCM is identifying those at greatest risk of sudden cardiac death
Restrictive cardiomyopathy and hypertrophic cardiomyopathy overlap: the importance of the phenotype
Restrictive cardiomyopathy (RCM) is defined on the basis of the haemodynamic finding of restrictive ventricular physiology. However, restrictive ventricular pathophysiology is also a feature of other subtypes of cardiomyopathy, including hypertrophic cardiomyopathy (HCM). Clinically and aetiologically, there is an overlap between RCM and HCM with restrictive physiology. However, the clinical distinction between these two entities can be an important pointer towards the underlying aetiology. This review highlights the importance of the recognition of the clinical phenotype as the first step in the classification of cardiomyopathies
Childhood-onset hypertrophic cardiomyopathy caused by thin-filament sarcomeric variants
Up to 20% of children with sarcomeric hypertrophic cardiomyopathy (HCM) have disease-causing variants in genes coding for thin-filament proteins. However, data on genotype-phenotype correlations for thin-filament disease are limited. This study describes the natural history and outcomes of children with thin-filament-associated HCM and compares it to thick-filament-associated disease.Longitudinal data were collected from 40 children under 18 years with a disease-causing variant in a thin-filament protein from a single quaternary referral centre. Twenty-one (female n=6, 35.5%) were diagnosed with HCM at a median age of 13.0 years (IQR 8.3-14.0). Over a median follow-up of 5.0 years (IQR 4.0-8.5), three (14.3%) experienced one or more major adverse cardiac events (MACE) (two patients had an out-of-hospital arrest and eight appropriate implantable cardiac defibrillator (ICD) therapies in three patients). One gene carrier died suddenly at age 9 years. Compared with those with thick-filament disease, children with thin-filament variants more commonly experienced non-sustained ventricular tachycardia [NSVT; n=6 (28.6%) vs n=14 (10.8%), p=0.024] or underwent ICD insertion (thin, n=13 (61.9%) vs thick, n=50 (38.5%), p=0.040). However, there was no difference in the incidence of MACE (thin 2.47/100 pt years (95% CI 0.80 to 7.66) vs thick 3.63/100 pt years (95% CI 2.25 to 5.84)) or an arrhythmic event (thin 1.65/100 pt years (95% CI 0.41 to 6.58) vs thick 2.55/100 pt years (95% CI 1.45 to 4.48), p value 0.43).This study suggests that adverse events in thin-filament disease are predominantly arrhythmic and may occur in the absence of hypertrophy, but overall short-term outcomes do not differ significantly from thick-filament disease
Disopyramide is a safe and effective treatment for children with obstructive hypertrophic cardiomyopathy
BACKGROUND: Left ventricular outflow tract obstruction (LVOTO) is present in 1/3 of children with Hypertrophic Cardiomyopathy (HCM). Disopyramide improves symptoms associated with LVOTO and delays surgical intervention in adults, but it is not licensed in children. AIM: To describe a single-centre thirty-year experience of using disopyramide to treat LVOTO-related symptoms in a paediatric HCM cohort. METHODS: Clinical data were collected for all patients meeting diagnostic criteria for HCM (<18 years) at the time of initiation, 6 months after, and last follow-up or end of disopyramide treatment. It included demographics, clinical history, 12‑lead electrocardiography, and echocardiography. Comparisons between baseline and 6 month follow up, and end of follow up respectively were performed. RESULTS: Fifty-one patients with HCM were started on disopyramide at a mean age 10.2±5.3 years. At 6 months, of those previously symptomatic, 33(86.8%) reported an improvement of symptoms and 12(31.6%) were asymptomatic. PR interval, corrected QT interval and maximal LVOT gradient had not significantly changed, but fewer participants were noted to have systolic anterior motion of the mitral valve 31 (72.1%) vs. 26 (57.80%). Patients were followed up for a median of 1.9 years (IQR 0.83-4.5). Nine patients (17.6%) reported side effects, and eleven patients (33.3%) with initial improvement in symptoms reported a return or worsening of symptoms requiring a change in medication (n = 4, 12.1%) or left ventricular septal myomectomy (n = 7, 21.2%) during follow up. CONCLUSION: Disopyramide is a safe and effective treatment for LVOTO-related symptoms in childhood obstructive HCM. Any delay in the need for invasive intervention, particularly during childhood, is of clear clinical benefit
Penetrance of Hypertrophic Cardiomyopathy in Sarcomere Protein Mutation Carriers
[Abstract]
Background.
Predictive genetic screening of relatives of patients with hypertrophic cardiomyopathy (HCM) caused by sarcomere protein (SP) gene mutations is current standard of care, but there are few data on long-term outcomes in mutation carriers without HCM.
Objectives.
The aim of this study was to determine the incidence of new HCM diagnosis in SP mutation carriers.
Methods.
This was a retrospective analysis of adult and pediatric SP mutation carriers identified during family screening who did not fulfill diagnostic criteria for HCM at first evaluation.
Results.
The authors evaluated 285 individuals from 156 families (median age 14.2 years [interquartile range: 6.8 to 31.6 years], 141 [49.5%] male individuals); 145 (50.9%) underwent cardiac magnetic resonance (CMR). Frequency of causal genes was as follows: MYBPC3 n = 123 (43.2%), MYH7 n = 69 (24.2%), TNNI3 n = 39 (13.7%), TNNT2 n = 34 (11.9%), TPM1 n = 9 (3.2%), MYL2 n = 6 (2.1%), ACTC1 n = 1 (0.4%), multiple mutations n = 4 (1.4%). Median follow-up was 8.0 years (interquartile range: 4.0 to 13.3 years) and 86 (30.2%) patients developed HCM; 16 of 50 (32.0%) fulfilled diagnostic criteria on CMR but not echocardiography. Estimated HCM penetrance at 15 years of follow-up was 46% (95% confidence interval [CI]: 38% to 54%). In a multivariable model adjusted for age and stratified for CMR, independent predictors of HCM development were male sex (hazard ratio [HR]: 2.91; 95% CI: 1.82 to 4.65) and abnormal electrocardiogram (ECG) (HR: 4.02; 95% CI: 2.51 to 6.44); TNNI3 variants had the lowest risk (HR: 0.19; 95% CI: 0.07 to 0.55, compared to MYBPC3).
Conclusions.
Following a first negative screening, approximately 50% of SP mutation carriers develop HCM over 15 years of follow-up. Male sex and an abnormal ECG are associated with a higher risk of developing HCM. Regular CMR should be considered in long-term screening
Indications and management of implantable cardioverter-defibrillator therapy in childhood hypertrophic cardiomyopathy
Sudden cardiac death is the most common mode of death during childhood and adolescence in hypertrophic cardiomyopathy, and identifying those individuals at highest risk is a major aspect of clinical care. The mainstay of preventative therapy is the implantable cardioverter-defibrillator, which has been shown to be effective at terminating malignant ventricular arrhythmias in children with hypertrophic cardiomyopathy but can be associated with substantial morbidity. Accurate identification of those children at highest risk who would benefit most from implantable cardioverter-defibrillator implantation while minimising the risk of complications is, therefore, essential. This position statement, on behalf of the Association for European Paediatric and Congenital Cardiology (AEPC), reviews the currently available data on established and proposed risk factors for sudden cardiac death in childhood-onset hypertrophic cardiomyopathy and current approaches for risk stratification in this population. It also provides guidance on identification of individuals at risk of sudden cardiac death and optimal management of implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy
- …