231 research outputs found

    Origin of ferromagnetism in Cs2_2AgF4_4: importance of Ag - F covalency

    Full text link
    The magnetic nature of Cs2_{2}AgF4_{4}, an isoelectronic and isostructural analogue of La2_2CuO4_4, is analyzed using density functional calculations. The ground state is found to be ferromagnetic and nearly half metallic. We find strong hybridization of Ag-dd and F-pp states. Substantial moments reside on the F atoms, which is unusual for the halides and reflects the chemistry of the Ag(II) ions in this compound. This provides the mechanism for ferromagnetism, which we find to be itinerant in character, a result of a Stoner instability enhanced by Hund's coupling on the F

    TaIrTe4 a ternary Type-II Weyl semi-metal

    Full text link
    In metallic condensed matter systems two different types of Weyl fermions can in principle emerge, with either a vanishing (type-I) or with a finite (type-II) density of states at the Weyl node energy. So far only WTe2 and MoTe2 were predicted to be type-II Weyl semi-metals. Here we identify TaIrTe4 as a third member of this family of topological semi-metals. TaIrTe4 has the attractive feature that it hosts only four well-separated Weyl points, the minimum imposed by symmetry. Moreover, the resulting topological surface states - Fermi arcs connecting Weyl nodes of opposite chirality - extend to about 1/3 of the surface Brillouin zone. This large momentum-space separation is very favorable for detecting the Fermi arcs spectroscopically and in transport experiments

    Collinear order in a frustrated three-dimensional spin-12\frac12 antiferromagnet Li2_2CuW2_2O8_8

    Full text link
    Magnetic frustration in three dimensions (3D) manifests itself in the spin-12\frac12 insulator Li2_2CuW2_2O8_8. Density-functional band-structure calculations reveal a peculiar spin lattice built of triangular planes with frustrated interplane couplings. The saturation field of 29 T contrasts with the susceptibility maximum at 8.5 K and a relatively low N\'eel temperature TN3.9T_N\simeq 3.9 K. Magnetic order below TNT_N is collinear with the propagation vector (0,12,0)(0,\frac12,0) and an ordered moment of 0.65(4) μB\mu_B according to neutron diffraction data. This reduced ordered moment together with the low maximum of the magnetic specific heat (Cmax/R0.35C^{\max}/R\simeq 0.35) pinpoint strong magnetic frustration in 3D. Collinear magnetic order suggests that quantum fluctuations play crucial role in this system, where a non-collinear spiral state would be stabilized classically.Comment: published version with supplemental material merged into the tex

    Antiferromagnetic ground state in the MnGa4_4 intermetallic compound

    Full text link
    Magnetism of the binary intermetallic compound MnGa4_4 is re-investigated. Band-structure calculations predict antiferromagnetic behavior in contrast to Pauli paramagnetism reported previously. Magnetic susceptibility measurements on single crystals indeed reveal an antiferromagnetic transition at TN=393T_N=393 K. Neutron powder diffraction and 69,71^{69,71}Ga nuclear quadrupole resonance spectroscopy show collinear antiferromagnetic order with magnetic moments alligned along the [111] direction of the cubic unit cell. The magnetic moment of 0.80(3)μB\mu_B at 1.5 K extracted from the neutron data is in good agreement with the band-structure results

    Possible re-entrant superconductivity in EuFe2As2 under pressure

    Full text link
    We studied the temperature-pressure phase diagram of EuFe2As2 by measurements of the electrical resistivity. The antiferromagnetic spin-density-wave transition at T_0 associated with the FeAs-layers is continuously suppressed with increasing pressure, while the antiferromagnetic ordering temperature of the Eu 2+ moments seems to be nearly pressure independent up to 2.6 GPa. Above 2 GPa a sharp drop of the resistivity, \rho(T), indicates the onset of superconductivity at T_c \approx 29.5 K. Surprisingly, on further reducing the temperature \rho(T) is increasing again and exhibiting a maximum caused by the ordering of the Eu 2+ moments, a behavior which is reminiscent of re-entrant superconductivity as it is observed in the ternary Chevrel phases or in the rare-earth nickel borocarbides

    Frequent strandings of dolphins and whales along the gulf of Mannar coast

    Get PDF
    The present observations no specific reason could be attributed towards the frequent strandlngs of marine mammals in the Gulf of Meinnar region. It Is inferred that any one factor as given above or more would have contributed towards the strandlngs. As the Indian Ocean is declared as a sanctuary for whales,the frequent stranding of whales eind dolphins emphasise the need for Intensive study on conservation measures. The scientific Information on the extent of strandlngs of marine mammals all along the coast needs consolidation

    Pressure-induced phase transitions and high-pressure tetragonal phase of Fe1.08Te

    Full text link
    We report the effects of hydrostatic pressure on the temperature-induced phase transitions in Fe1.08Te in the pressure range 0-3 GPa using synchrotron powder x-ray diffraction (XRD). The results reveal a plethora of phase transitions. At ambient pressure, Fe1.08Te undergoes simultaneous first-order structural symmetry-breaking and magnetic phase transitions, namely from the paramagnetic tetragonal (P4/nmm) to the antiferromagnetic monoclinic (P2_1/m) phase. We show that, at a pressure of 1.33 GPa, the low temperature structure adopts an orthorhombic symmetry. More importantly, for pressures of 2.29 GPa and higher, a symmetry-conserving tetragonal-tetragonal phase transition has been identified from a change in the c/a ratio of the lattice parameters. The succession of different pressure and temperature-induced structural and magnetic phases indicates the presence of strong magneto-elastic coupling effects in this material.Comment: 11 page

    Pressure-induced ferromagnetism due to an anisotropic electronic topological transition in Fe1.08Te

    Full text link
    A rapid and anisotropic modification of the Fermi-surface shape can be associated with abrupt changes in crystalline lattice geometry or in the magnetic state of a material. In this study we show that such an electronic topological transition is at the basis of the formation of an unusual pressure-induced tetragonal ferromagnetic phase in Fe1.08_{1.08}Te. Around 2 GPa, the orthorhombic and incommensurate antiferromagnetic ground-state of Fe1.08_{1.08}Te is transformed upon increasing pressure into a tetragonal ferromagnetic state via a conventional first-order transition. On the other hand, an isostructural transition takes place from the paramagnetic high-temperature state into the ferromagnetic phase as a rare case of a `type 0' transformation with anisotropic properties. Electronic-structure calculations in combination with electrical resistivity, magnetization, and x-ray diffraction experiments show that the electronic system of Fe1.08_{1.08}Te is instable with respect to profound topological transitions that can drive fundamental changes of the lattice anisotropy and the associated magnetic order.Comment: 7 pages, 4 figur

    Bulk and surface electronic properties of SmB6: a hard x-ray photoelectron spectroscopy study

    Full text link
    We have carried out bulk-sensitive hard x-ray photoelectron spectroscopy (HAXPES) measurements on in-situ cleaved and ex-situ polished SmB6 single crystals. Using the multiplet-structure in the Sm 3d core level spectra, we determined reliably that the valence of Sm in bulk SmB6 is close to 2.55 at ~5 K. Temperature dependent measurements revealed that the Sm valence gradually increases to 2.64 at 300 K. From a detailed line shape analysis we can clearly observe that not only the J=0 but also the J=1 state of the Sm 4f 6 configuration becomes occupied at elevated temperatures. Making use of the polarization dependence, we were able to identify and extract the Sm 4f spectral weight of the bulk material. Finally, we revealed that the oxidized or chemically damaged surface region of the ex-situ polished SmB6 single crystal is surprisingly thin, about 1 nm only.Comment: 11 pages, 8 figure
    corecore