199 research outputs found

    Inhibitive effect of Arachis hypogeae on the corrosion of mild steel in sulphuric acid solution

    Get PDF
    The corrosion assessment of mild steel in H2SO4-Arachis hypogeae natural oils have been studied using electrochemical technique. The surface morphology of as-corroded samples was assessed with scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS). The results revealed that corrosion rate of mild steel with Arachis hypogeae-H2SO4 environment decreased significantly. Results of the linear polarization indicate a higher potential value and inhibitor efficiency of 98.68, 86.87 and 97.10% at 100%v/v Arachis hypogeae with an increase in polarization resistance (Rp) and lower current density for the inhibited samples than the uninhibited mild steel. There exists some level of correlation in the corrosion efficiency between the methods used as criteria for the corrosion evaluation of mild steel/Arachis hypogeae in 2M H2SO4 solution

    Effect of Multifunctional Composite Infringement on the Electrochemical Propagation and Characterization of Al-Mg-Si/TiO2-SnO2 Composite by Stir Casting Method

    Get PDF
    In this paper, the performance evaluation of aluminum alloy, their microstructural and mechanical properties associated with the change in induced composite particles were studied. The influence of TiO2.SnO2 metal composite in the range of 5-10% wt as inoculant on Al-Mg-Si series alloy and its corrosion resistance mechanism has been explored by liquid metallurgy and investigated in 3.65% NaCl solution using linear potentiodynamic polarization technique. The composite alloyed compositions and phase change were determined with (SEM/EDX and XRD). The surface structure of the alloy samples shows that TiO2.SnO2 particles were dispatched along the interface. The addition of TiO2.SnO2 to the alloy led to the precipitation and modification of complex intermetallic particles like Al2SnTiO and AlSiSn which also indicate a fairly good interfacial interaction. This phase orientation further reduces the possibility of corrosion penetration within the intermediate. It was found that the addition of dispersed composite in the melt provide feasible improvement on the hardness behavior

    FORAGE YIELD AND NUTRITIVE QUALITY OF TWO GROUNDNUT (ARACHIS HYPOGAEA L) VARIETIES AS INFLUENCED BY FERTILIZER TYPES

    Get PDF
    This study was carried out to investigate the forage yield and nutritive quality of two groundnut (SAMNUT 22 and local) varieties as influenced by fertilizer type in the humid ecological zone of Nigeria. The study was a 3 x 2 factorial experiment in a split-plot design with the fertilizer type (poultry droppings, NPK and the control) as the main plot and variety (SAMNUT 22 and Local) as the sub-plot which amounts to six treatments with three replicates. The inorganic-fertilized SAMNUT 22 had the highest forage dry matter (DM) yield (10.23 t/ha). The inorganic-fertilized local variety had the highest DM (94.60 %) and the least DM value (93.68 %) recorded for inorganic-fertilized SAMNUT 22. The highest and least crude protein (21.71 % vs 18.28%) contents were recorded for inorganic-fertilized local and unfertilized SAMNUT 22 variety, respectively. The neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL) that were recorded for the unfertilized SAMNUT 22 were the highest with values 58.13 %, 25.86 % and 3.35 %, respectively. The highest gas (57.75 ml/200mgDM) production, methane (13.50 ml/200mgDM) and in vitro dry matter digestibility (70.22 %) were recorded for unfertilized local variety, unfertilized SAMNUT 22 and organic-fertilized local variety, respectively. The unfertilized SAMNUT 22 had the highest tannin content of 6.43 mg/100g and saponin content of 9.29 mg/100g whereas the organically fertilized Local variety had the highest oxalate (140.65 mg/100g) content. In conclusion, the two varieties and especially SAMNUT 22 when inorganic fertilizer was applied have proved to be good feed resource with regards to high yield, CP and low anti-nutrient quality and are recommended as forage of high nutritive values for ruminant animal production. &nbsp

    Genomic and Resistome Analyses of <em>Elizabethkingia anophelis</em> Strain B2D isolated from Dental Plaque of Patient

    Get PDF
    \ua9 2024, HH Publisher. All rights reserved.In this study, strain B2D isolated from a dental plaque sample of a human patient was studied for its general characteristics, taxonomic identification, genome features, and resistome profile. The bacterium exhibited antibiotic resistance to all beta-lactam antibiotics, nitrofuran, and sulfonamides, with high minimum inhibitory concentrations. It was only sensitive to the fluoroquinolone ciprofloxacin and intermediately susceptible to aminoglycoside tobramycin. A preliminary identification through 16S rRNA gene sequences revealed that it shared the highest sequence identity with Elizabethkingia anophelis subsp. endophytica JM-87T (100%) and Elizabethkingia anophelis subsp. anophelis R26T (99.31%). The draft genome of strain B2D was approximately 3.9 Mbp with 50 contigs and 35.5% GC content. A 16S rRNA gene and core genes-based phylogenetic analyses revealed a close phylogenetic relationship between strain B2D and the other Elizabethkingia type strains. An above species level threshold average nucleotide identity value confirmed its taxonomic identity as Elizabethkingia anophelis. Furthermore, we conducted a resistome analysis of strain B2D and Elizabethkingia type strains, revealing the presence of widespread antibiotic resistance genes, including beta-lactamases and genes associated with cationic antiseptic resistance and glycopeptide resistance. Overall, the multidrug resistant profile of strain B2D as elucidated and confirmed through whole genome analysis indicated its potential as a reservoir of beta-lactamase genes. Moreover, its presence within dental plaque in the human oral cavity prompts speculation regarding its role as an opportunistic pathogen capable of causing infections, particularly in immunocompromised individuals

    Bentall procedure 39 years after implantation of a Starr-Edwards Aortic Caged- Ball-Valve Prosthesis

    Get PDF
    We report a case of a male patient who received an implantation of a Starr-Edwards-caged-ball-valve-prosthesis in 1967. The surgery and postoperative course were without complications and the patient recovered well after the operation. For the next four decades, the patient remained asymptomatic - no restrictions on his lifestyle and without any complications. In 2006, 39 years after the initial operation, we performed a Bentall-Procedure to treat an aortic ascendens aneurysm with diameters of 6.0 × 6.5 cm: we explanted the old Starr-Edwards-aortic-caged-ball-valve-prosthesis and replaced the ascending aorta with a 29 mm St.Jude Medical aortic-valve-composite-graft and re-implanted the coronary arteries

    Advantages to a diverging Raman amplifier

    Get PDF
    The plasma Raman instability can efficiently compress a nanosecond long high-power laser pulse to sub-picosecond duration. Although, many authors envisaged a converging beam geometry for Raman amplification, here we propose the exact opposite geometry; the amplification should start at the intense focus of the seed. We generalise the coupled laser envelope equations to include this non-collimated case. The new geometry completely eradicates the usual trailing secondary peaks of the output pulse, which typically lower the efficiency by half. It also reduces, by orders of magnitude, the initial seed pulse energy required for efficient operation. As in the collimated case, the evolution is self similar, although the temporal pulse envelope is different. A two-dimensional particle-in-cell simulation demonstrates efficient amplification of a diverging seed with only 0.3 mJ energy. The pulse has no secondary peaks and almost constant intensity as it amplifies and diverges

    AMPK - Activated Protein Kinase and its Role in Energy Metabolism of the Heart

    Get PDF
    Adenosine monophosphate – activated kinase (AMPK) plays a key role in the coordination of the heart’s anabolic and catabolic pathways. It induces a cellular cascade at the center of maintaining energy homeostasis in the cardiomyocytes.. The activated AMPK is a heterotrimeric protein, separated into a catalytic α - subunit (63kDa), a regulating β - subunit (38kDa) and a γ - subunit (38kDa), which is allosterically adjusted by adenosine triphosphate (ATP) and adenosine monophosphate (AMP). The actual binding of AMP to the γ – subunit is the step which activates AMPK

    Optimization of plasma amplifiers

    Get PDF
    Plasma amplifiers offer a route to side-step limitations on chirped pulse amplification and generate laser pulses at the power frontier. They compress long pulses by transferring energy to a shorter pulse via the Raman or Brillouin instabilities. We present an extensive kinetic numerical study of the three-dimensional parameter space for the Raman case. Further particle-in-cell simulations find the optimal seed pulse parameters for experimentally relevant constraints. The high-efficiency self-similar behavior is observed only for seeds shorter than the linear Raman growth time. A test case similar to an upcoming experiment at the Laboratory for Laser Energetics is found to maintain good transverse coherence and high-energy efficiency. Effective compression of a 10 kJ , nanosecond-long driver pulse is also demonstrated in a 15-cm-long amplifier
    corecore