6,236 research outputs found
Preprocessing Solar Images while Preserving their Latent Structure
Telescopes such as the Atmospheric Imaging Assembly aboard the Solar Dynamics
Observatory, a NASA satellite, collect massive streams of high resolution
images of the Sun through multiple wavelength filters. Reconstructing
pixel-by-pixel thermal properties based on these images can be framed as an
ill-posed inverse problem with Poisson noise, but this reconstruction is
computationally expensive and there is disagreement among researchers about
what regularization or prior assumptions are most appropriate. This article
presents an image segmentation framework for preprocessing such images in order
to reduce the data volume while preserving as much thermal information as
possible for later downstream analyses. The resulting segmented images reflect
thermal properties but do not depend on solving the ill-posed inverse problem.
This allows users to avoid the Poisson inverse problem altogether or to tackle
it on each of 10 segments rather than on each of 10 pixels,
reducing computing time by a factor of 10. We employ a parametric
class of dissimilarities that can be expressed as cosine dissimilarity
functions or Hellinger distances between nonlinearly transformed vectors of
multi-passband observations in each pixel. We develop a decision theoretic
framework for choosing the dissimilarity that minimizes the expected loss that
arises when estimating identifiable thermal properties based on segmented
images rather than on a pixel-by-pixel basis. We also examine the efficacy of
different dissimilarities for recovering clusters in the underlying thermal
properties. The expected losses are computed under scientifically motivated
prior distributions. Two simulation studies guide our choices of dissimilarity
function. We illustrate our method by segmenting images of a coronal hole
observed on 26 February 2015
Avoiding structural collapses in refurbishment - a decision support system (HSE research report)
The Transformation of the U.S. Banking Industry: What a Long, Strange Trips It's Been
macroeconomics, Transformation, U.S. Banking Industry
Internal Finance and Firm Investment
We examine the neoclassical investment model using a panel of U.S. manufacturing firms. The standard model with no financing constraints cannot be rejected for firms with high (pre-sample) dividend payouts. However, it is decisively rejected for firms with low (pre-sample) payouts (firms we expect to face financing constraints). Hem, investment is sensitive to both firm cash flow and macroeconomic credit conditions, holding constant investment opportunities. Sample splits based on firm size or maturity do not produce such distinctions. The latter comparison identifies firms where "free-cash-flow" problems might be expected to produce correlations between investment and cash flow.
Detecting Unspecified Structure in Low-Count Images
Unexpected structure in images of astronomical sources often presents itself
upon visual inspection of the image, but such apparent structure may either
correspond to true features in the source or be due to noise in the data. This
paper presents a method for testing whether inferred structure in an image with
Poisson noise represents a significant departure from a baseline (null) model
of the image. To infer image structure, we conduct a Bayesian analysis of a
full model that uses a multiscale component to allow flexible departures from
the posited null model. As a test statistic, we use a tail probability of the
posterior distribution under the full model. This choice of test statistic
allows us to estimate a computationally efficient upper bound on a p-value that
enables us to draw strong conclusions even when there are limited computational
resources that can be devoted to simulations under the null model. We
demonstrate the statistical performance of our method on simulated images.
Applying our method to an X-ray image of the quasar 0730+257, we find
significant evidence against the null model of a single point source and
uniform background, lending support to the claim of an X-ray jet
- …
