227 research outputs found
Selection of Potent Non-Toxic Inhibitory Sequences from a Randomized HIV-1 Specific Lentiviral Short Hairpin RNA Library
RNA interference (RNAi) has been considered as an efficient therapeutic approach against the human immunodeficiency virus type 1 (HIV-1). However, to establish a durable inhibition of HIV-1, multiple effective short hairpin RNAs (shRNAs) need to be stably expressed to prevent the emergence of viral escape variants. In this study, we engineered a randomized lentiviral H1-promoter driven shRNA-library against the viral genome. Potent HIV-1 specific shRNAs were selected by ganciclovir treatment of cell lines stably expressing the cDNA of Herpes Simplex Virus thymidine kinase (HSV-TK) fused to HIV-1 nucleotide sequences. More than 50% of 200 selected shRNAs inhibited an HIV-1 based luciferase reporter assay by more than 70%. Stable expression of some of those shRNAs in an HIV-1 permissive HeLa cell line inhibited infection of wild-type HIV-1 by more than 90%. The combination of a randomized shRNA-library directed against HIV-1 with a live cell selection procedure yielded non-toxic and highly efficient HIV-1 specific inhibitory sequences that could serve as valuable candidates for gene therapy studies
XIAP-mediated Caspase Inhibition in Hodgkin's Lymphoma–derived B Cells
The malignant Hodgkin and Reed-Sternberg cells of Hodgkin's lymphoma (HL) and HL-derived B cell lines were previously shown to be resistant to different apoptotic stimuli. We show here that cytochrome c fails to stimulate caspases-9 and -3 activation in cytosolic extracts of HL-derived B cells, which is due to high level expression of X-linked inhibitor of apoptosis (XIAP). Coimmunoprecipitation studies revealed that XIAP, apoptosis protease-activating factor–1, and caspase-3 are complexed in HL-derived B cell lysates. Even after stimulation with exogenous cytochrome c and dATP, XIAP impairs the proteolytic processing and activation of caspase-3. In cytosolic extracts, inhibition of XIAP by the second mitochondria-derived activator of caspases (Smac)/DIABLO, or immunodepletion of XIAP restores cytochrome c–triggered processing and activation of caspase-3. Smac or a Smac-derived agonistic peptide also sensitized intact HL-derived B cells for the apoptotic action of staurosporine. Finally, Hodgkin and Reed-Sternberg cells of primary tumor HL tissues also constitutively and abundantly express XIAP. The results of this paper suggest that high level XIAP expression is a hallmark of HL, which may play a crucial role in resistance to apoptosis
Factor associated with neutral sphingomyelinase activity mediates navigational capacity of leukocytes responding to wounds and infection:live imaging studies in zebrafish larvae
Factor associated with neutral sphingomyelinase activity (FAN) is an adaptor protein that specifically binds to the p55 receptor for TNF (TNF-RI). Our previous investigations demonstrated that FAN plays a role in TNF-induced actin reorganization by connecting the plasma membrane with actin cytoskeleton, suggesting that FAN may impact on cellular motility in response to TNF and in the context of immune inflammatory conditions. In this study, we used the translucent zebrafish larvae for in vivo analysis of leukocyte migration after morpholino knockdown of FAN. FAN-deficient zebrafish leukocytes were impaired in their migration toward tail fin wounds, leading to a reduced number of cells reaching the wound. Furthermore, FAN-deficient leukocytes show an impaired response to bacterial infections, suggesting that FAN is generally required for the directed chemotactic response of immune cells independent of the nature of the stimulus. Cell-tracking analysis up to 3 h after injury revealed that the reduced number of leukocytes is not due to a reduction in random motility or speed of movement. Leukocytes from FAN-deficient embryos protrude pseudopodia in all directions instead of having one clear leading edge. Our results suggest that FAN-deficient leukocytes exhibit an impaired navigational capacity, leading to a disrupted chemotactic response
Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy
BACKGROUND: The combination of chemotherapy with the vascular endothelial growth factor (VEGF) antibody bevacizumab is a standard of care in advanced colorectal cancer (CRC). However, biomarkers predicting outcome of bevacizumab-containing treatment are lacking. As angiopoietin-2 (Ang-2) is a key regulator of vascular remodelling in concert with VEGF, we investigated its role as a biomarker in metastatic CRC. METHODS: Serum Ang-2 levels were measured in 33 healthy volunteers and 90 patients with CRC. Of these, 34 had metastatic disease and received bevacizumab-containing therapy. To determine the tissue of origin of Ang-2, quantitative real-time PCR was performed on microdissected cryosections of human CRC and in a murine xenograft model of CRC using species-specific amplification. RESULTS: Ang-2 originated from the stromal compartment of CRC tissues. Serum Ang-2 levels were significantly elevated in patients with metastatic CRC compared with healthy controls. Amongst patients receiving bevacizumab-containing treatment, low pre-therapeutic serum Ang-2 levels were associated with a significant better response rate (82 vs 31%; P<0.01), a prolonged median progression-free survival (14.1 vs 8.5 months; P<0.01) and a reduction of 91% in the hazard of death (P<0.05). CONCLUSION: Serum Ang-2 is a candidate biomarker for outcome of patients with metastatic CRC treated with bevacizumab-containing therapy, and it should be further validated to customise combined chemotherapeutic and anti-angiogenic treatment. British Journal of Cancer (2010) 103, 1407-1414. doi: 10.1038/sj.bjc.6605925 www.bjcancer.com Published online 5 October 2010 (C) 2010 Cancer Research U
Novel SMAC-mimetics synergistically stimulate melanoma cell death in combination with TRAIL and Bortezomib
BACKGROUND: XIAP (X-linked inhibitor of apoptosis protein) is an anti-apoptotic protein exerting its activity by binding and suppressing caspases. As XIAP is overexpressed in several tumours, in which it apparently contributes to chemoresistance, and because its activity in vivo is antagonised by second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis-binding protein with low pI, small molecules mimicking SMAC (so called SMAC-mimetics) can potentially overcome tumour resistance by promoting apoptosis.
METHODS: Three homodimeric compounds were synthesised tethering a monomeric SMAC-mimetic with different linkers and their affinity binding for the baculoviral inhibitor repeats domains of XIAP measured by fluorescent polarisation assay. The apoptotic activity of these molecules, alone or in combination with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and/or Bortezomib, was tested in melanoma cell lines by MTT viability assays and western blot analysis of activated caspases.
RESULTS: We show that in melanoma cell lines, which are typically resistant to chemotherapeutic agents, XIAP knock-down sensitises cells to TRAIL treatment in vitro, also favouring the accumulation of cleaved caspase-8. We also describe a new series of 4-substituted azabicyclo[5.3.0] alkane monomeric and dimeric SMAC-mimetics that target various members of the IAP family and powerfully synergise at submicromolar concentrations with TRAIL in inducing cell death. Finally, we show that the simultaneous administration of newly developed SMAC-mimetics with Bortezomib potently triggers apoptosis in a melanoma cell line resistant to the combined effect of SMAC-mimetics and TRAIL.
CONCLUSION: Hence, the newly developed SMAC-mimetics effectively synergise with TRAIL and Bortezomib in inducing cell death. These findings warrant further preclinical studies in vivo to verify the anticancer effectiveness of the combination of these agents
B cell-specific conditional expression of Myd88(p.L252P) leads to the development of diffuse large B cell lymphoma in mice
The adaptor protein MYD88 is critical to relay activation of Toll-like receptor signaling to NF-{kappa}B activation.MYD88 mutations, particularly the p.L265P mutation, have been described in numerous distinct B cell malignancies, including diffuse large B cell lymphoma (DLBCL). 29% of activated B cell (ABC)-type DLBCL, which is characterized by constitutive activation of the NF-{kappa}B pathway, carry the p.L265P mutation. In addition, ABC-DLBCL frequently displays focal copy number gains affecting BCL2. Here, we generated a novel mouse model, in which Cre-mediated recombination, specifically in B cells, leads to the conditional expression of Myd88(p.L252P)(the orthologous position of the human MYD88(p.L265P) mutation) from the endogenous locus. These animals develop a lympho-proliferative disease, and occasional transformation into clonal lymphomas. The clonal disease displays morphological and immunophenotypical characteristics of ABC-DLBCL. Lymphomagenesis can be accelerated by crossing in a further novel allele, which mediates conditional overexpression ofBCL2 Cross-validation experiments in human DLBCL samples revealed that bothMYD88andCD79Bmutations are substantially enriched in ABC-DLBCL, compared to germinal center B cell DLBCL. Furthermore, analyses of human DLBCL genome sequencing data confirmed that BCL2 amplifications frequently co-occur with MYD88 mutations, further validating our approach. Lastly,in silicoexperiments revealed that particularly MYD88-mutant ABC-DLBCL cells display an actionable addiction to BCL2. Altogether, we generated a novel autochthonous mouse model of ABC-DLBCL, which could be used as a preclinical platform for the development and validation of novel therapeutic approaches for the treatment of ABC-DLBCL
Vectorial import via a metastable disulfide-linked complex allows for a quality control step and import by the mitochondrial disulfide relay
Disulfide formation in the mitochondrial intermembrane space (IMS) is an essential process. It is catalyzed by the disulfide relay machinery, which couples substrate import and oxidation. The machinery relies on the oxidoreductase and chaperone CHCHD4-Mia40. Here, we report on the driving force for IMS import and on a redox quality control mechanism. We demonstrate that unfolded reduced proteins, upon translocation into the IMS, initiate formation of a metastable disulfide-linked complex with CHCHD4. If this interaction does not result in productive oxidation, then substrates are released to the cytosol and degraded by the proteasome. Based on these data, we propose a redox quality control step at the level of the disulfide-linked intermediate that relies on the vectorial nature of IMS import. Our findings also provide the mechanistic framework to explain failures in import of numerous human disease mutants in CHCHD4 substrates
Validation of pharmacodynamic assays to evaluate the clinical efficacy of an antisense compound (AEG 35156) targeted to the X-linked inhibitor of apoptosis protein XIAP
The inhibitor of apoptosis protein, XIAP, is frequently overexpressed in chemoresistant human tumours. An antisense oligonucleotide (AEG 35156/GEM 640) that targets XIAP has recently entered phase I trials in the UK. Method validation data are presented on three pharmacodynamic assays that will be utilised during this trial. Quantitative RT-PCR was based on a Taqman assay and was confirmed to be specific for XIAP. Assay linearity extended over four orders of magnitude. MDA-MB-231/U6-E1 cells and clone X-G4 stably expressing an RNAi vector against XIAP were chosen as high and low XIAP expression quality controls (QCs). Within-day and between-day coefficients of variation (CVs) in precision for cycle threshold (CT) and delta CT values (employing GAPDH and beta 2 microglobulin as housekeepers) were always less than 10%. A Western blotting technique was validated using a GST–XIAP fusion protein as a standard and HeLa cells and SF268 (human glioblastoma) cells as high and low XIAP expression QCs. Specificity of the final choice of antibody for XIAP was evaluated by analysing a panel of cell lines including clone X-G4. The assay was linear over a 29-fold range of protein concentration and between-day precision was 29% for the low QC and 23% for the high QC when normalised to GAPDH. XIAP protein was also shown to be stable at −80°C for at least 60 days. M30-Apoptosense™ plasma Elisa detects a caspase-cleaved fragment of cytokeratin 18 (CK18), believed to be a surrogate marker for tumour cell apoptosis. Generation of an independent QC was achieved through the treatment of X-G4 cells with staurosporine and collection of media. Measurements on assay precision and kit-to-kit QC were always less than 10%. The M30 antigen (CK18-Asp396) was stable for 3 months at −80°C, while at 37°C it had a half-life of 80–100 h in healthy volunteer plasma. Results from the phase I trial are eagerly awaited
Streptococcus pneumoniae Serotype 1 Capsular Polysaccharide Induces CD8+CD28− Regulatory T Lymphocytes by TCR Crosslinking
Zwitterionic capsular polysaccharides (ZPS) of commensal bacteria are characterized by having both positive and negative charged substituents on each repeating unit of a highly repetitive structure that has an α-helix configuration. In this paper we look at the immune response of CD8+ T cells to ZPSs. Intraperitoneal application of the ZPS Sp1 from Streptococcus pneumoniae serotype 1 induces CD8+CD28− T cells in the spleen and peritoneal cavity of WT mice. However, chemically modified Sp1 (mSp1) without the positive charge and resembling common negatively charged polysaccharides fails to induce CD8+CD28− T lymphocytes. The Sp1-induced CD8+CD28− T lymphocytes are CD122lowCTLA-4+CD39+. They synthesize IL-10 and TGF-β. The Sp1-induced CD8+CD28− T cells exhibit immunosuppressive properties on CD4+ T cells in vivo and in vitro. Experimental approaches to elucidate the mechanism of CD8+ T cell activation by Sp1 demonstrate in a dimeric MHC class I-Ig model that Sp1 induces CD8+ T cell activation by enhancing crosslinking of TCR. The expansion of CD8+CD28− T cells is independent, of direct antigen-presenting cell/T cell contact and, to the specificity of the T cell receptor (TCR). In CD8+CD28− T cells, Sp1 enhances Zap-70 phosphorylation and increasingly involves NF-κB which ultimately results in protection versus apoptosis and cell death and promotes survival and accumulation of the CD8+CD28− population. This is the first description of a naturally occurring bacterial antigen that is able to induce suppressive CD8+CD28− T lymphocytes in vivo and in vitro. The underlying mechanism of CD8+ T cell activation appears to rely on enhanced TCR crosslinking. The data provides evidence that ZPS of commensal bacteria play an important role in peripheral tolerance mechanisms and the maintenance of the homeostasis of the immune system
- …