319 research outputs found

    Theory of tunneling spectroscopy in superconducting Sr2RuO4

    Full text link
    A theory for tunneling spectroscopy in normal metal /insulator/triplet superconductor junction is presented. We assume two kinds of non-unitary triplet superconducting states which are the most promising states for Sr2_{2}RuO4_{4}. The calculated conductance spectra showzero-bias peaks as well as gap structures. The existences of residual components in the spectra reflect the non-unitary properties of superconducting states.Comment: 5pages, 4figures(included), to be published in Phys.Rev.B 56, (1997

    Theory of magnetotunneling spectroscopy in spin triplet p-wave superconductors

    Full text link
    We study the influence of a magnetic field HH on the zero-bias conductance peak (ZBCP) due to zero-energy Andreev bound state (ZES) in normal metal / unconventional superconductor. For p-wave junctions, ZBCP does not split into two by HH even for sufficiently low transparent junctions, where ZBCP clearly splits for d-wave. This unique property originates from the fact that for p-wave superconductors, perpendicularly injected quasiparticle form ZES, which contribute most dominantly on the tunneling conductance. In addition, we show that for pxp_{x}+ipyp_{y}-wave superconductor junctions, the height of ZBCP is sensitive to HH due to the formation of broken time reversal symmetry state. We propose that tunneling spectroscopy in the presence of magnetic field, i.e.i.e., magnetotunnelingmagnetotunneling, is an promising method to determine the pairing symmetry of unconventional superconductors.Comment: 4 pages, 6 figures, using jpsj2.cl

    Andreev bound states in normal and ferromagnet/high-Tc superconducting tunnel junctions

    Full text link
    Ag/BSCCO and Fe/Ag/BSCCO planar tunnel junctions were constructed in order to study experimentally the effect of an exchange potential on the spin polarized current transported through Andreev bound states appearing at the interface with a superconductor with broken time reversal pairing symmetry. The zero bias conductance peak (ZBCP) resulting from the Andreev bound states (ABS) is split into two symmetric peaks shifted at finite energies when the counterlectrode is normal. Four asymmetric peaks are observed when the ferromagnetic spin polarized charge reservoir is added, due to the combined effect of a spin-filtering exchange energy in the barrier, which is a spin dependent phenomenon, and the spin independent effect of a broken time reversal symmetry (BTRS). The polarization in the iron layer leads to asymmetry. Due to the shift of ABS peaks to finite energies, the conductance at zero energy behaves as predicted by recent theoretical developments for pure d-wave junctions without Andreev reflections.Comment: 4 pages, 2 figures. Submitted to Physica

    Spin current in ferromagnet/insulator/superconductor junctions

    Full text link
    A theory of spin polarized tunneling spectroscopy based on a scattering theory is given for tunneling junctions between ferromagnets and d-wave superconductors. The spin filtering effect of an exchange field in the insulator is also treated. We clarify that the properties of the Andreev reflection are largely modified due to a presence of an exchange field in the ferromagnets, and consequently the Andreev reflected quasiparticle shows an evanescent-wave behavior depending on the injection angle of the quasiparticle. Conductance formulas for the spin current as well as the charge current are given as a function of the applied voltage and the spin-polarization in the ferromagnet for arbitrary barrier heights. It is shown that the surface bound states do not contribute to the spin current and that the zero-bias conductance peak expected for a d-wave superconductor splits into two peaks under the influence of the exchange interaction in the insulator.Comment: 14 pages, 11 figure

    Directional tunnelling spectroscopy of a normal metal-s+gs+g-wave superconductor junction

    Full text link
    We calculate the normal metal-s+gs+g-wave superconductor tunnelling spectrum for various junction orientations and for two forms of the superconducting gap, one which allows for point nodes and the other which allows for line nodes. For a junction oriented with its normal parallel to the ab plane of the tetragonal superconductor, we find that the tunnelling spectrum is strongly dependent on orientation in the plane. The spectrum contains two peaks at energies equivalent to the magnitudes of the gap function in the direction parallel to the interface normal and in the direction making a π/4\pi/4 angle with the normal. These two peaks appear in both superconductors with point nodes and line nodes, but are more prominent in the latter. For the tunnelling along the c axis, we find a sharp peak at the gap maximum in the conductance spectrum of the superconductor with line nodes, whereas with point nodes we find a peak occurring at the value of the gap function along the c axis. We discuss the relevance of our result to borocarbide systems.Comment: 16 pages, 10 figure
    corecore